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In recent years, the rapid advancement of ICT (Information and Communication Technology) and AI (Artificial 
Intelligence) has led to increased research activity in the measurement, control, and analysis of various moving entities, 
including humans and machines. These technologies are being applied across a wide range of fields, including 
construction, agriculture, manufacturing, healthcare, and sports, driving the development of innovative methodologies. 
 
In the field of measurement technology, advancements in sensors and IoT (Internet of Things) have enabled real-time 
and highly precise data collection. For example, on construction sites, precise tracking of heavy machinery and 
workers contributes to improved safety and operational efficiency. In agriculture, drones and robots are being utilized 
to monitor crop growth, facilitating the advancement of precision farming. 
 
In the domain of control technology, autonomous driving and robotics have made significant progress, enabling the 
independent operation of moving entities in diverse environments. In the manufacturing sector, AI-driven robotic 
control is enhancing productivity and reducing labor burdens. Similarly, in healthcare, the integration of AI into 
surgical support robots is enabling more precise medical procedures, marking a transformative shift in medical 
technology. 
 
In the area of motion analysis, researchers are analyzing collected data to understand behavioral patterns and convert 
tacit knowledge into explicit knowledge. In sports science, motion analysis of athletes is aiding in performance 
enhancement, while in the medical field, research is being conducted to quantify rehabilitation effectiveness, 
facilitating more effective treatment strategies. 
 
This special issue aims to gather the latest research findings on the measurement, control, and analysis of moving 
entities across various domains and to foster innovation through interdisciplinary and cross-sector collaboration. By 
facilitating knowledge exchange and cooperation among researchers and engineers from different fields, further 
technological advancements can be expected. We hope that this special issue will contribute to the continued evolution 
of both academic and technological frontiers. 
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Abstract 

In recent years, the number of fatalities in traffic accidents involving motorcyclists has remained almost 

unchanged, with single-vehicle accidents accounting for 37.2% of all accidents by accident type in the past 

five years. In the development of overturn prevention devices for motorcycles, problems remain in post-

mounting of the device as well as its downsizing. On the other hand, an existing study using deep learning 

has proposed a method for detecting dangerous objects on the road surface leading motorcycles to overturn, 

though this method still needs verification under different conditions. In this study, we apply a method for 

detecting dangerous objects on the road surface from video images using YOLO to two types of 360 -degree 

cameras and verify that this method is versatile under different conditions. 

Keywords: Motorcycle; Dangerous objects on the road surface; 360-degree camera; Deep learning. 

1. Introduction 

In recent years, the number of fatalities in traffic accidents involving motorcyclists has remained almost unchanged, 

and although the Metropolitan Police Department has been conducting motorcycle safety classes, the number of 

fatalities increased for all ages in 2023. Single-vehicle accidents accounted for 37.2% of all accidents by accident type 

in the past five years from 2018 to 2022 (Tokyo Metropolitan Police Department, 2024). The occurrence situations of 

traffic accidents resulting in injury or death in 2024 show that the number of fatalities from motorcycle accidents is 

about twice as high as that of automobiles accidents. Although ADAS (Nikkei xTECH, 2024), an advanced safety 

technology for motorcycles has been developed, its diffusion is slower than that for automobiles. Therefore, riders are 

required to follow the traffic rules and instantly predict danger. An existing study on the development of an overt urn 

prevention device for motorcycles using the gyro effect suggests a need for downsizing the device (Senoo et al., 2017). 

A study on detecting dangerous objects as well as detection of dangerous objects that may cause motorcycles to 

overturn using deep learning (Inoue et al., 2023) as well as a study on detecting dangers leading to motorcycle 

accidents using 360-degree cameras (Inoue et al., 2024) show the difficult issue of verification under different 

conditions. In this study, we apply a method to detect dangerous objects on the road surface from video images using 

YOLO to two types of 360-degree cameras (hereinafter referred to as "Dangerous object detection method") and verify 

that this method is versatile. In this study, as with the existing studies, fallen leaves, gravel, manholes, bumps, and 

wet road surfaces are considered as dangerous objects on the road surface. 

2. Method 

Fig. 1 shows the process flow of the dangerous object detection method. The dangerous object detection method 

consists of a learning function and an estimation function. The input data for the learning function is the learning data, 

and the output data is the dangerous object detection model. The input data for the estimation function are video 

https://creativecommons.org/licenses/by/4.0/
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images taken by the 360-degree camera while riding a motorcycle, and the output data are the results of dangerous 

object detection. 

 

The learning function builds up a learning model to detect dangerous objects on the road surface that may cause a 

motorcycle to overturn. Specifically, as shown in Table 1, the model to detect fallen leaves, gravel, manholes, bumps, 

and wet road surface as dangerous objects from video images (hereinafter referred to as "dangerous object detection 

model") by annotating dangerous objects on the road surface and learning them using YOLOv5. 

 

The estimation function is used to detect dangerous objects on the road surface from video images captured by the 

360-degree camera. In the image generation process, the THETA+ application is used to convert the display format 

to flat, and crop to 1.91:1, and cut out the video image at 3 fps. The dangerous object detection process is used to 

detect dangerous objects on the road surface using the dangerous object detection model built up by the learning 

function. 

3. Demonstration Experiment 

In this experiment, we confirm the versatility of the proposed method by applying it to the video images shot by using 

360-degree cameras under different conditions regarding types of cameras, resolution, and the versions of YOLO. The 

experimental conditions for Experiments 1 through 3 are shown in Table 2. 

3.1. Method of the experiment 

First, this study targets two types of cameras: THETA SC and THETA V, both of which are products of RICHO. In 

this experiment, each of the 360-degree cameras are installed at the front part the motorcycle (Fig. 2). A male person 

in his 20s rides the motorcycle along the same section of road in the urban area of Wakayama Prefecture multiple 

times with the same speed as much as possible. Then, the results of detecting dangerous objects detected by applying 

the dangerous object detection method to the respective video images are compared with the manually generated 

correct-answer data, to make evaluation based on precision, recall, and F-measure. The learning model was built up 

using different images from the data used for the evaluation. For the learning data, the data shot by THETA SC on 

 

 
Fig. 1. Process Flow 

 

Table 1. Example of annotation 

Fallen leave Gravel Manhole Bump Wet road surface 

     
 

 
Fig. 2. Experimental view 

 

Table 2. Experimental conditions 

Experiment 

Camera Video resolution YOLO 

THETA 

SC 

THETA 

V 
Full HD 4K v5 v8 

1 〇 〇 〇 - 〇 - 

2 - 〇 〇 〇 〇 - 

3 〇 - 〇 - 〇 〇 

 

Image generation process

Dangerous object detection process

Estimation function

Video images of 360-degree cameras

Process of building up a 

dangerous object detection model

Learning function

Learning data

Results of detecting dangerous objects

Reference

Dangerous object 

detection model

FunctionLegend : Process Data
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March 20, 21, July 10, and 12, 2024 were used. 3,103 images were used for the dangerous object detection model. On 

the other hand, the evaluation data were those shot by THETA SC and THETA V on March 22 and July 11, 2024. 

3.2. Experiment 1: Verification of versatility for different types of cameras  

In Experiment 1, The dangerous object detection method is applied to the video images shot using THETA SC and 

THETA V to verify its versatility for different types of cameras. The ISO sensitivity differs between the two, ranging 

from 100 to 1,600 with THETA SC and from 64 to 6,400 with THETA V. The video resolution is 1,920 x 960 for 

both. 

 

Table 3 shows the experimental results of Experiment 1, and Table 4 shows an example of the results of detecting 

dangerous objects. The overall F-measure is 0.917 for THETA SC and 0.839 for THETA V respectively, indicating 

that the dangerous object detection method is capable of detecting dangerous objects on the road surface correctly on 

the whole. Comparing the F-measure by camera type, the difference between THETA SC and THETA V was 0.078, 

which is not much difference. However, as the results of detecting bumps and wet road surface shown in Table 3, 

there were cases where only one of the 360-degree cameras was able to detect dangerous objects, even when the 

images were taken at the same point. Besides, comparing the F-measure by dangerous object type, the F-measure was 

lower for bumps and wet road surfaces than for fallen leaves, gravel, and manholes. Focusing on the result of detecting 

dangerous objects, there was a tendency of omission of detection for small bumps or wet road surfaces covered with 

shadows. We will increase the number of learning data under various environments and change the version of YOLO 

in order to advance the system. 

Table 3. Experimental result of Experiment 1 

Camera 
Video 

resolution 
YOLO Dangerous objects 

Fallen 

leave 
Gravel Manhole Bump 

Wet road 

surface 
Total 

THETA 

SC 

Full HD v5 

Total number 20 23 11 47 11 112 

Number of determination cases 19 19 8 37 8 91 

Number of correct answers 19 19 8 37 8 91 

Precision 1.000 1.000 1.000 1.000 1.000 1.000 

Recall 0.950 0.826 0.727 0.787 0.727 0.813 

F-measure 0.974 0.905 0.842 0.881 0.842 0.897 

THETA 

V 

Total number 16 18 8 44 11 97 

Number of determination cases 15 13 7 33 7 75 

Number of correct answers 15 13 7 33 7 75 

Precision 1.000 1.000 1.000 1.000 1.000 1.000 

Recall 0.938 0.722 0.875 0.750 0.636 0.773 

F-measure 0.968 0.839 0.933 0.857 0.778 0.872 

 

Table 4. Result of detecting dangerous objects with different cameras 

Dangerous 

objects 
Fallen leave Gravel Manhole Bump Wet road surface 

THETA SC 

     

THETA V 
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3.3. Experiment 2: Verification of versatility for different resolutions  

In Experiment 2, the dangerous object detection method is applied to the video images shot using THETA V with 

resolutions of 1,920 x 960 and 2,840 x 1,920 to verify its versatility for different resolutions. It should be noted that 

as THETA SC only has a resolution of 1,920 x 960, it was excluded from the experiment.  

 

Table 5 shows the experimental results of Experiment 2, and Table 6 shows an example of the results of detecting 

dangerous objects. The overall F-measure is 0.872 for full HD, and 0.857 for 4k, indicating that the dangerous object 

detection method is capable of detecting dangerous objects on the road surface correctly for the most part. Comparing 

the F-measure by the resolutions, the difference between full HD and 4K was 0.015, which was not a large difference. 

However, the result of detection shows the tendency that 4k is capable of detecting dangerous objects on the road 

surface located at a remote distance compared with full HD. 

 

Comparison of F-measure by types of dangerous objects shows that it is high for fallen leaves and manholes in the 

case of 4K, just as the same with full HD. Focusing on the dangerous object for which the F -measure for 4K is lower 

than that for full HD, examples of success and failure of gravel, bumps, and wet road surfaces are shown in Table 7. 

The result of detection indicates the tendency of failing to detect light-colored gravel, bumps where it was difficult to 

visually check the unevenness of the road surface, and the road surface where the wetted area is small. In the future, 

we plan to advance the method by increasing the learning data under diverse environments and by changing the version 

of YOLO. 

3.4. Experiment 3: Verification of versatility for different versions of YOLO 

In Experiment 2, the dangerous object detection model is generated for two types of versions: YOLOv5 and YOLOv8 

to verify the versatility of the method in the case of different versions of YOLO. 

 

Table 8 shows the experimental result of Experiment 3, and Table 9 shows an example of the results of detecting 

dangerous objects. The overall F-measure is 0.897 for YOLOv5 and 0.874 for YOLOv8, which indicate that the 

dangerous object detection method is capable of dangerous objects on the road surface for the most part. The detection 

result indicates the tendency that YOLOv8 is capable of detect dangerous objects on the road surface  located at a 

distance better than YOLOv5. However, YOLOv8 sometimes detected a wet road surface erroneously as a manhole. 

The detection result shown in Table 10 suggests that its cause can be considered that the pattern of the wet road surface 

 

Table 5. Experimental result of Experiment 2 

Camera 
Video 

resolution 
YOLO Dangerous objects 

Fallen 

leave 
Gravel Manhole Bump 

Wet road 

surface 
Total 

THETA 

V 
4K v5 

Total number 14 22 10 41 9 96 

Number of determination cases 14 15 9 29 5 72 

Number of correct answers 14 15 9 29 5 72 

Precision 1.000 1.000 1.000 1.000 1.000 1.000 

Recall 1.000 0.682 0.900 0.707 0.556 0.750 

F-measure 1.000 0.811 0.947 0.829 0.714 0.857 

 

Table 6. Result of detecting dangerous objects with different resolutions 

Video 

Resolution 
Fallen leave Gravel Manhole Bump Wet road surface 

Full HD 

     

4K 
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is similar to the manhole. In addition, focusing on the gravel for which the F-measure with YOLOv8 is lower than 

that with YOLOv5, it is made clear that the recall ratio of the gravel is low with YOLOv8, and that there are more 

failures in detection than other dangerous objects. Just as in Experience 2, its cause can be considered the diffe rence 

in color of the gravel. Since this occurs due to differences in weather conditions as shown in Table 11, we plan to 

advance the method by increase the learning data under diverse environments in the future. 

 

The results of experiments 1 to 3 indicate that there is little difference among the overall F -measure when applying 

the dangerous object detection method to the video images shot with 360-degree cameras under different conditions 

as to the types of cameras, resolutions, and YOLO versions, which proves the versatility of the proposed dangerous 

object detection method. Furthermore, assuming its utilization in the actual sites on different dates or under different 

weather conditions, the fact that the detection accuracy was equal to or higher than 0.85 in different dates and under 

different weather conditions in this study indicates that this dangerous object detection method is useful.  

Table 7.  Examples of success and failure for the results of detecting dangerous objects  

Dangerous 

objects 
Success Failure 

Gravel 

  

Bump 

  

Wet road 

surface 

  

 

Table 8. Experimental result of Experiment 3 

Camera 
Video 

resolution 
YOLO Dangerous objects 

Fallen 

leave 
Gravel Manhole Bump 

Wet road 

surface 
Total 

THETA 

SC 
Full HD v8 

Total number 20 24 11 49 11 115 

Number of determination cases 19 17 10 37 8 91 

Number of correct answers 19 17 10 36 8 90 

Precision 1.000 1.000 1.000 0.973 1.000 0.989 

Recall 0.950 0.708 0.909 0.735 0.727 0.783 

F-measure 0.974 0.829 0.952 0.837 0.842 0.874 

 

Table 9. Result of detecting dangerous objects with different versions of YOLO 

YOLO Fallen leave Gravel Manhole Bump Wet road surface 

v5 

     

v8 
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4. Conclusion 

In this study, we verified the versatility of the method to detect dangerous objects on the road surfaces including fallen 

leaves, gravel, manholes, bumps, and wet road surfaces. In the demonstration experiments, we applied the dangerous 

object detection method to the video images shot under respective conditions for the 360-degree camera (THETA SC 

and THETA V), resolutions (full HD and 4K), and YOLO versions (YOLOv5 and YOLOv8) to evaluate the precision 

ratio, recall ratio, and F-measure. As a result of demonstration experiments, it was found that there is little difference 

in the F-measure under different conditions such as types of cameras, resolution, and versions of YOLO, and 

consequently it is capable of detecting dangerous objects on the roads for the most part.  

 

In the future, we plan to improve its accuracy by increasing the learning data under a variety of environments to deal 

with a problem of detection errors through repeated verification under different environments. We also aim to decrease 

the number of motorcycle accidents by detecting the factors leading to motorcycle accidents with additional 

information about the drivers. 
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Wet road surface Manhole 

 

 

Table 11. Shot images of dangerous objects under different weather conditions 

Weather Fair Weather Rain 
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Abstract 

This paper presents a custom-built IoT camera system designed for recognizing wild animal approaches, 

where data transmission and power consumption are critical concerns in resource-constrained outdoor 

settings. The proposed method involves the spectral analysis on both infrared and environmental sound data 

before uploading images and videos to the remote server. Experiments, including battery endurance tests and 

wildlife monitoring, were conducted to validate the system. These results showed that the system minimized 

false positives caused by environmental factors such as wind or vegetation movement. Importantly, adding 

frequency features from audio waveforms that capture sounds including wind noise and footsteps led to an 

improvement in detection accuracy, which increased the AUC from 0.894 to 0.990 in Random Forest (RF) 

and from 0.900 with infrared sensor data alone to 0.987 in Logistic Regression (LR). These findings 

contribute to applications in wildlife conservation, agricultural protection, and ecosystem monitoring. 

Keywords: Wildlife approach detection; Environmental sound analysis; Low-power IoT systems. 

1. Introduction 

Crop damage caused by wildlife remains a serious social issue, as it leads to certain vulnerable species becoming un-

cultivable (Ministry of Agriculture, Forestry and Fisheries, 2023). Monitoring animal behavior is a critical first step 

in controlling wildlife pests; however, tracking free-roaming animals such as wild boars within a camera's field of 

view is inherently challenging. Fixed cameras equipped with human detection sensors in the real-world outdoor 

settings often experience false detections due to noise generated by swaying vegetation, resulting in an excessive 

number of unnecessary images being uploaded to a cloud server. Additionally, battery exhaustion is a persistent issue 

when installing cameras in remote, mountainous areas where securing a power source is impractical. Even when 

animals are captured within the camera’s field of view, it is often challenging to interpret situations involving an 

approaching animal based solely on images. Proper interpretation and appropriate actions require considering the 

behavioral and environmental contexts with those the detection results (Chang et al., 2009; Wu et al., 2023). 

Environmental contexts can include various audible events such as footsteps, wind, and vegetation movement. These 

environmental contexts have the potential to indirectly identify animal presence or movement. 

 

Most wildlife monitoring systems adopt either bioacoustic monitoring or image processing techniques. Bioacoustic 

monitoring is effective for detecting animals through vocalizations, enabling the monitoring of species such as frogs 

and deer (McLoughlin et al., 2019; Lostanlen et al., 2019). However, this approach assumes that animals vocalize and 

that environmental noise is minimal. On the other hand, YOLO (You Only Look Once) models are widely used for 

their high accuracy and real-time performance in image processing (Li et al., 2023; Ma et al., 2024). Yet, both methods 

https://creativecommons.org/licenses/by/4.0/
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face challenges in terms of energy consumption and data transmission when implemented on resource -constrained 

devices such as the Raspberry Pi. 

 

Existing wildlife monitoring solutions include commercial trail cameras from SPYPOINT and Moultrie. These 

products often employ AI-based filters to mitigate false triggers and can upload images via Wi-Fi or cellular networks. 

However, they primarily rely on PIR sensors and image-based analysis before uploading images, which may lead to 

increased false positives in windy or densely vegetated environments (SPYPOINT, n.d.; Moultrie Mobile, n.d.). In 

contrast, our approach integrates both infrared and audio frequency features (e.g., wind noise, footsteps) to reduce 

false positives more effectively, especially under challenging outdoor conditions.  

 

Our study is among the first to indicate that combining infrared and audio data efficiently improves detection accuracy, 

which not only conserves energy and reduces data transmission but also extends operational longevity in remote 

wildlife monitoring applications. We have been developing custom-built IoT camera systems based on Raspberry Pi 

Zero 2 by integrating infrared and audio sensors for monitoring animal movements (Tochimoto et al., 2023). Unlike 

existing systems, our multimodal approach uniquely employs spectral analysis on both infrared and environmental 

sound data collected from the surroundings to minimize false positives caused by environmental factors such as wind 

or vegetation movement. This study primarily targets medium to large animals, such  as wild boars, deer, monkeys, 

and raccoons, as these species are known to cause significant damage to crops.  

 

This paper presents the experimental evaluations of our multimodal IoT camera system, conducted at two distinct 

locations in Japan. In 2023, we tested the system in an open space near a residential area to assess its performance 

under moderate environmental conditions by focusing on the system’s ability to reduce false detections in a relatively 

controlled setting. Subsequently, from May to July 2024, we deployed the system in a mountainous region of Katsurao 

Village, Fukushima, Japan, where the environment introduced challenges such as dense vegetation and variable 

weather conditions. 

2. Multimodal IoT Camera System 

2.1. Hardware Design and Implementation 

The IoT camera system developed in this study is based on the Raspberry Pi Zero 2 to integrate various sensors such 

as an infrared sensor, infrared camera, Raspberry Pi camera, and audio microphone. Two types of the multimodal 

camera systems were designed for this research: The first model, Version 1 (Ver 1), uses a small mobile battery paired 

with a solar panel, while the second model, Version 2 (Ver 2), employs a 12 V lithium-ion battery to support extended 

continuous operation. In Ver 1, the system features a solar panel that recharges the battery using sunlight. Ver 2, on 

the other hand, has a larger battery capacity than Ver 1 and is also equipped with an infrared camera to enable nighttime 

detection. Both models are housed in custom-designed cases created with a 3D printer, which encase all sensors and 

batteries. The front of the case includes an infrared sensor, a camera, and an audio microphone. Each case is designed 

to be highly waterproof, with functionality verified through high-pressure shower tests, as shown in Figure 1.   

 

The infrared sensor used in this study is a pyroelectric infrared sensor, PaPIRs (manufactured by Panasonic, long -

distance detection type. This sensor is a long-distance detection type with a 12-m range, providing an analog output 

that enables the collection of time-series data from the surrounding environment for advanced time-series analysis.  

Our preliminary tests indicate that beyond 12 m, false alarms rise significantly due to environmental factors, which 

informed our decision to limit the range for improved accuracy and power conservation (Tochimoto et al., 2023). 

Detection ranges of commercial trail cameras can exceed 15 m, potentially increasing the risk of false positives in 

dense vegetation. In contrast, we selected a 12 m effective detection radius to balance sensitivity and battery efficiency. 

 

(b) 

Figure 1: Two Types of Multimodal IoT Camera Systems: (a) the Version 1 (Ver 1) with a 

Mobile Battery and (b) the Version 2 (Ver 2) with an Extended Battery for Longer Operation. 

(a) 
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In addition, an omnidirectional audio microphone, as illustrated in Figure 2, captures environmental audio waveforms, 

including sounds from rain, wind, and animal vocalizations. Processing this time-series audio data allows the system 

to classify diverse environmental sounds, during interpreting motion detected by the infrared sensor.  

 

2.2. Software Design and Implementation 

This system requires continuous acquisition of infrared data while simultaneously operating the camera and 

microphone. Multithreading is employed for enabling the concurrent operation of various sensors. Every 0.1 seconds, 

the system retrieves values from the infrared sensor. As shown in Figure 3 of the system’s sequence diagram, if a 

reaction is detected, it initiates both the photo capture and audio recording processes as subprocesses to collect data 

concurrently, while infrared data collection remains uninterrupted. Additionally, creating a cron job on the Raspberry 

Pi Zero 2, which is a resident program for executing scripts automatically, enables the device to start sensing 

immediately upon power-on.  

 

The transmission of image data is the heaviest load on server communication. Therefore, to minimize unnecessary 

image transmissions and improve efficiency in resource-limited environments, such as mountainous areas, the system 

uses machine learning models locally to assess the likelihood of animal detection before transmission. Only when 

there is a high probability of detecting an animal does the system transmit relevant data to the remote server . 

 

 

3. Methods 

3.1. Operation Testing 

The multimodal IoT camera system continuously monitors infrared waveforms. The system records images, videos, 

and audio data to log detected events when the detection threshold is exceeded. The collected infrared waveform data 

is stored in CSV format hourly, and data retrieval is performed remotely via a 4th Generation Mobile Communication 

System (4G) connection. Figure 4 illustrates the test setup. A power supply with a solar panel and a 4G router is placed 

at the center, with the Camera 1 and the Camera 2 representing the IoT camera systems developed and installed for 

this study. Each IoT camera system is connected via Wi-Fi and can be placed anywhere within a Wi-Fi range of 

approximately 50 m. 

 

Figure 2: Block Diagram of Ver 2 IoT Camera System 

Figure 3: System Sequence for Multithreading Process 
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3.2. Test Sites and Measured Data 

Data collection for this study was conducted at two test sites: (a) an open space near a residential area in April 2023 

and (b) a mountainous area in Katsurao Village, Fukushima, Japan, from May to July 2024. Two  IoT cameras were 

installed at each site, with the sensing areas marked as squares in the figures. At both locations, the ground was 

covered with leaves and grass, and vegetation was within the cameras' field of view.  Conducting experiments at two 

different locations not only provided diverse measured data for model training and testing but also strengthened the 

reliability of the findings by validating the system under the practical environmental conditions. 

 

Figure 6 shows an example of the infrared and audio waveform data collected per window time. To prepare the data 

for analysis, the following processing steps were performed. Noise artifacts may occur depending on the recording’s 

start time (as shown in Figure 6), and these can affect the Fourier Transform (FFT) results. Therefore, as part of the 

audio data preprocessing, the first 0.3 seconds from the start of the recording were removed. Additionally, as 

preprocessing for the infrared data, a 10-second window was extracted from the point of detection. Next, FFT was 

applied to the time-series data of the infrared and audio waveforms. By converting these waveforms to the frequency 

domain for each time window, characteristic features were extracted. Subsequently, the sum and variance of the 

infrared and audio waveform FFT results were calculated, and labels for successful detection (“Approaching”) or 

failed detection (“No Approaching”) were added based on the footage captured during detection, creating the datas et 

for analysis.  

 

 

As shown in Table 1, the first set of columns in the dataset includes the filename, which contains the timestamp and 

the ground truth label. The subsequent columns (highlighted in red and blue) represent frequency features extracted 

from the infrared and audio waveforms. The column labeled “sum” indicates the sum of the components within the 

active frequency bands, “var” represents the variance of those components within the 10-second window, and “mean” 

represents their mean value. The “0.0 Hz” column indicates the spectral power of the frequency band between 0 Hz 

and 0.1 Hz. 

 

 

 

Figure 6: Examples of infrared and audio waveform data collected within a single time window 

 

Figure 5: Test Sites 

 

(a) Open space near a residential area      (b) Mountainous area 

Figure 4: Operation Testing 
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3.3. PCA Method 

To extract spectral features in the frequency domain, a dataset was generated where the spectral power for each 

frequency band served as a feature. The infrared waveform was segmented into units of either 0.1 Hz or 1 Hz, while 

the audio waveform was divided into units of 1 kHz, 2 kHz, and 4 kHz to assess their impact on detection accuracy. 

This segmentation, however, resulted in high-dimensional data. As illustrated in Table 2, six datasets (Dataset1 

through Dataset6) were created based on these configurations. To manage the high dimensionality, Principal 

Component Analysis (PCA) was employed for dimensionality reduction, and detection accuracy was evaluated both 

with and without PCA. 

Table 2: Column Specifications for Each Dataset Based on Infrared and Audio Waveforms 

Dataset Infrared Waveform Audio Waveform Infrared Columns Audio Columns 

Dataset1 0.1 Hz 1 kHz 54 27 

Dataset2 0.1 Hz 2 kHz 54 14 

Dataset3 0.1 Hz 4 kHz 54 8 

Dataset4 1 Hz 1 kHz 10 27 

Dataset5 1 Hz 2 kHz 10 14 

Dataset6 1 Hz 4 kHz 10 8 

 

3.4. Machine Learning Method 

Two machine learning models, Random Forest (RF) and Logistic Regression (LR), were evaluated to compare the 

performance of the system using infrared and audio waveform data. Additionally, two approaches were tested to 

maximize model accuracy: one applied dimensionality reduction via Principal Component Analysis (PCA) to extract 

key features, while the other used all features without PCA. 

 

In the PCA-applied approach, the reduced-dimension data were input into the model. In contrast, in the non-PCA 

approach, all features were used directly without dimensionality reduction. This comparison aimed to evaluate 

improvements in training efficiency achieved through dimensionality reduction and to analyze performance 

differences between models using all features and those using reduced features.  

 

To address class imbalances in the training data, the Synthetic Minority Over-sampling Technique (SMOTE) was 

applied, and a stratified 5-fold cross-validation was performed. This approach enables a balanced training dataset by 

reducing the effects of class imbalance during training. The test data were used without additional processing, and 

model performance was assessed using the Area Under the Curve (AUC) metric.  

4. Results 

4.1. Operation Verification Results 

Table 3 shows the predicted and actual operating days of the system. In this experiment, two types of systems were 

tested: The Ver 1 as the mobile battery model and the Ver 2 as the lithium-ion battery model, with the operating time 

of each system measured. 

 

In the Ver 1, power consumption was approximately 1 W, with a battery capacity of 144 Wh. Although the predicted 

operating time was 144 hours, the result showed the system operated continuously for 168 hours, which is likely 

extended by the solar panel recharging the battery. In the Ver 2, with a battery capacity of 360 Wh (12 V) and a power 

consumption of 1 W, the estimated operating time was 360 hours. The actual operating time was 336 hours, 

approximately two weeks, and was close to the expected result. Both models demonstrated that power consumption 

and environmental conditions influenced operating time, with the Ver 2 proving more suitable for stable, long-term 

operation. 

Table 1: Example Dataset with Frequency Features from Infrared and Audio Waveforms 
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Table 3: Operational Records and Detection Counts 

Version estimated operation time Number of working hour Number of detections 

Ver 1 168 168 59 

Ver 2 360 336 66 

 

4.2. Data Collection Results 

At the first test site, 267 data instances were collected, including 13 instances with animals and 254 without. At the 

second test site in Katsurao Village, 2,087 data instances were collected, with 109 containing animals and 1,978 

without. The images shown in Figure 7 below provide examples of actual camera captures. At the first site, data 

included images of humans and cats, while at the second test site, images included humans, dogs, raccoons, and wild 

boars. When no animals were present, the cameras occasionally recorded empty scenes triggered mistakenly by 

swaying vegetation due to wind. 

4.3. PCA Results  

To improve the performance of the machine learning model, feature selection was conducted to identify the most 

relevant columns (features). Given the high dimensionality of the current dataset, a Principal Component Analysis 

(PCA) was applied to reduce dimensionality and extract the most important features. For each dataset, principal 

components were selected until the cumulative contribution rate reached 90%, and the contribution of each feature to 

(a) Human Detection  (b) Cat Detection 

 

Figure 7: Images Captured During Detection Events 

(c) Wild Boar Detection  (d) Swaying Vegetation 

 

(a) Dataset 1                   (b) Dataset 2                   (c) Dataset 3 

  

(d) Dataset 4                    (e) Dataset 5                   (f) Dataset 6 

Figure 8: Cumulative Contribution Rate 
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these components was evaluated. Figure 8 shows the cumulative contribution rates of PCA for each dataset, while 

Table 4 lists the top 10 contributing features in Principal Components 1 (PC1) to 5 (PC5) for each dataset.  Based on 

the analysis of the contributing features and the video data, the PC1 likely corresponds to swaying vegetation, and the 

PC2 to environmental noise such as wind. 

Table 4: Contribution Rate (Example from Dataset1) 

PC1 

(Swaying 

Vegetation) 

PC2 

(Environmental Noise, 

e.g., Wind) 

PC3 

(Animal Vocal 

Characteristics) 

PC4 

(Slow Movements 

of Animals) 

PC5 

Environmental Noise, 

e.g., Wind 

2.7 Hz 0.149 10 kHz 0.228 2 kHz 0.175 0.4Hz 0.267 14 kHz 0.208 

2.5 Hz 0.148 9 kHz 0.227 1 kHz 0.174 0.6Hz 0.242 13 kHz 0.186 

2.1 Hz 0.148 11 kHz 0.224 3 kHz 0.174 0.5Hz 0.235 15 kHz 0.175 

2.2 Hz 0.148 7 kHz 0.223 0.4 Hz 0.170 0.9Hz 0.193 9 kHz 0.092 

2.8 Hz 0.148 8 kHz 0.223 0.6 Hz 0.159 0.7Hz 0.187 11 kHz 0.081 

3.0 Hz 0.148 6 kHz 0.221 4 kHz 0.148 0.1Hz 0.178 10 kHz 0.078 

2.3 Hz 0.148 12 kHz 0.216 0.5 Hz 0.147 0.3Hz 0.169 12 kHz 0.074 

2.4 Hz 0.148 5 kHz 0.216 0.3 Hz 0.145 23 kHz 0.168 16 kHz 0.063 

3.1 Hz 0.148 16 kHz 0.213 6 kHz 0.142 20 kHz 0.162 4.7 Hz 0.059 

3.2 Hz 0.147 13 kHz 0.213 7 kHz 0.138 24 kHz 0.160 4.6 Hz 0.057 

 

 

For the infrared waveform, low-frequency components such as 2–3 Hz and 0.1–1 Hz made substantial contributions 

across multiple datasets, as they appear to reflect responses to animal approaches and environmental fluctuations. In 

the audio waveform, high and mid-frequency components, specifically in the 10–11 kHz and 1–3 kHz ranges, were 

also significant, and may correspond to noise and animal-related sounds in the audio signal. The variance of the audio 

waveform ("var" in the audio category, as shown in Table 1) contributed strongly across multiple datasets as a key 

indicator of variations in environmental and animal sounds.  

4.4. Machine Learning Results 

Table 5 shows the 5-fold stratified cross-validated AUC scores and the independent test AUC scores of the RF model 

with and without PCA. These cross-validated AUC scores are averaged over a stratified 5-fold procedure with SMOTE 

applied to the training split (80 %), while the test AUC scores represent performance on a separate hold-out set (20 %) 

without further oversampling. From the results, the combination of infrared 0.1 Hz and audio 4 kHz achieved the 

highest AUC score of 0.990. When PCA was applied, the combination of infrared 0.1 Hz and audio 1 kHz recorded a 

high AUC score of 0.986. These results indicate that for lower-dimensional data, high performance can be achieved 

even without using PCA. 

 

Table 6 presents the AUC results of the LR model with and without PCA. When PCA was applied, the combination 

of infrared 0.1 Hz and audio 1 kHz achieved an AUC of 0.987 with PCA, which nearly matched the 0.985 AUC 

without PCA. This finding indicates a slight improvement in model accuracy when PCA is applied to higher-

dimensional data. 

 

The Random Forest (RF) model maintained high performance regardless of whether PCA was applied or not. It is 

noteworthy that the combination of infrared 0.1 Hz and audio 4 kHz achieved the highest AUC score of 0.990 without 

PCA. Furthermore, even with PCA applied, high AUC scores of 0.986 were recorded for the combinations of infrared 

0.1 Hz and audio 1 kHz, as well as infrared 0.1 Hz and audio 2 kHz. These results indicate that the RF model can 

achieve sufficient performance without PCA, while PCA proves to be effective for high-dimensional data. 

 

On the other hand, applying PCA to low-dimensional data was found to reduce performance. For instance, in the 

Logistic Regression (LR) model, the combination of infrared 1 Hz and audio 4 kHz achieved an AUC score of 0.950 

without PCA, which dropped to 0.877 when PCA was applied. This demonstrates that PCA is not always effective in 

every scenario. 
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Table 5: Random Forest AUC with and without PCA     Table 6: Logistic Regression AUC with and without PCA 
Infrared Audio PCA Cross-Validated 

AUC (Mean:0.98) 

Test AUC  

(Mean:0.96) 

 Infrared Audio PCA Cross-Validated 

AUC (Mean:0.93) 

Test AUC  

(Mean:0.94) 

0.1 Hz 4 kHz No 0.952 0.990 0.1Hz 1KHz Yes 0.961 0.987 

1 Hz 1 kHz No 0.984 0.989 1Hz 1KHz No 0.941 0.987 

0.1 Hz 1 kHz Yes 0.990 0.986 1Hz 2KHz No 0.955 0.985 

0.1 Hz 2 kHz Yes 0.992 0.986 0.1Hz 2KHz Yes 0.961 0.980 

1 Hz 4 kHz No 0.972 0.984 0.1Hz 1KHz No 0.931 0.972 

1 Hz 2 kHz No 0.982 0.982 0.1Hz 2KHz No 0.925 0.965 

0.1 Hz 1 kHz No 0.973 0.980 1Hz 4KHz No 0.893 0.950 

0.1 Hz 2 kHz No 0.984 0.979 0.1Hz 4KHz No 0.892 0.922 

1 Hz 2 kHz Yes 0.983 0.915 1Hz 1KHz Yes 0.946 0.881 

1 Hz 1 kHz Yes 0.975 0.906 1Hz 2KHz Yes 0.918 0.879 

1 Hz 4 kHz Yes 0.981 0.895 1Hz 4KHz Yes 0.884 0.877 

0.1 Hz 4 kHz Yes 0.991 0.874 0.1Hz 4KHz Yes 0.922 0.847 

 

4.5. Variable Importance in Machine Learning Models 

The important frequency bands were identified using the Random Forest (RF) and Logistic Regression (LR). As shown 

in Tables 7 and 8, the analysis focused on the data with the highest AUC values among those without PCA, specifically 

the combination of infrared 0.1 Hz and audio 1 kHz, to identify key frequency bands.  Table 7 summarizes the feature 

importance from the RF, while Table 8 shows the coefficients from the LR. 

 

In the RF results, the 5 kHz frequency band showed the highest importance (0.079), followed by 11 kHz, 13 kHz, and 

10 kHz. These results indicate that high-frequency audio data plays a significant role in animal detection. In contrast, 

the importance of infrared data was relatively low, and high-frequency audio data contributes substantially to the 

model's predictions. 

 

The RF model prioritized high-frequency audio bands (e.g., 5 kHz, 11 kHz, 13 kHz), and it suggests that audio data 

plays an important role in detecting animal vocalizations and environmental noise. The LR model, however, placed 

greater emphasis on low-frequency infrared data, such as 0.7 Hz and 1.7 Hz. This suggests that infrared data is more 

effective for identifying slow animal movements and environmental fluctuations.  

Table 7: Random Forest Feature Importance   Table8: Logistic Regression Coefficients 

Feature Importance Data Type  Feature Importance Data Type 

5 kHz 0.079 Audio 2 kHz 1.83 Audio 

11 kHz 0.047 Audio 0.7 Hz 1.79 Infrared 

13 kHz 0.045 Audio 1.7 Hz 1.60 Infrared 

10 kHz 0.042 Audio 15 kHz 1.44 Audio 

8 kHz 0.040 Audio 6 kHz 1.27 Audio 

9 kHz 0.040 Audio 5.0 Hz 1.27 Infrared 

12 kHz 0.039 Audio 13 kHz 1.18 Audio 

7 kHz 0.038 Audio 0.4 Hz 1.10 Infrared 

infrared_mean 0.036 Infrared 0.6 Hz 1.09 Infrared 

infrared_var 0.033 Infrared 4.2 Hz 1.08 Infrared 

6 kHz 0.033 Audio 4.5 Hz 1.08 Infrared 

0.5 Hz 0.032 Infrared 0.5 Hz 1.03 Infrared 

audio_var 0.032 Infrared 5 kHz 1.03 Audio 

0.4 Hz 0.031 Infrared 14 kHz 0.99 Audio 

2 kHz 0.029 Audio 2.9 Hz 0.96 Infrared 

4 kHz 0.029 Audio 10 kHz 0.80 Audio 

0.0 Hz 0.029 Infrared 3.5 Hz 0.80 Infrared 

audio_add 0.021 Audio 12 kHz 0.78 Audio 

3 kHz 0.018 Audio 1.5 Hz 0.69 Infrared 

1 kHz 0.018 Audio 2.4 Hz 0.67 Infrared 
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4.6. Influence of Audio Waveform 

This study assessed the effect of integrating audio waveforms with infrared waveforms on the accuracy of animal 

approach detection. Models trained with only infrared waveforms were compared to those using both infrared and 

audio waveforms. As shown in Figure 9, AUC scores for the RF and the LR achieved 0.894 and 0.900, respectively, 

when using only infrared waveforms. These models using frequency features extracted from infrared waveforms alone 

achieved a reasonable level of accuracy, although the risk of false positives and missed detections remains. The 

inclusion of audio frequency features improved the AUC to 0.990 for the RF and 0.987 for the LR. These results are 

consistent with the cross-validated and test AUC values shown in Tables 5 and 6. From these findings, we confirm 

that integrating audio waveforms plays an essential role.  

 

Table 9 summarizes selected training results for each model, while Figure 10 illustrates examples of detection under 

different conditions: Case 1 (Wild Boar) represents a straightforward scenario where accurate detection was achieved 

with both infrared-only and infrared-plus-audio data. Case 2 (Human) is the case of a false negative in the infrared-

only approach, where minimal movement between frames caused the model to misclassify the instance as “no 

approaching.” The addition of frequency features extracted from audio waveforms allowed the detection of human 

voices, resulting in a correct classification of “approaching.” Lastly, Case 3 (No Detection) is the case of a false 

positive with the infrared-only approach, where swaying vegetation was misclassified as “approaching.” The addition 

of frequency features from audio waveforms helped identify wind noise for the correct classification of “no 

approaching.” 

Table 9: Comparison of Detection Results: Infrared Only vs. Infrared with Audio 

Case Ground Truth LR_IR Only RF_IR Only LR_IR+Audio RF_IR+Audio 

Case1 (Wild Boar) P P P P P 

Case2 (Human) P N N P P 

Case3 (No Detection) N P P N N 

LR: Random Forest   RF: Random Forest   IR: Infrared 

 

 

(a) Case1: Wild Boar                (b) Case2: Human               (c) Case3: No Detection 

Figure 10: Comparison of Detection Cases Under Various Conditions 

(a) Infrared Only   (b) Infrared + Audio 

Figure 9: ROC Curves and AUC Comparison Between Infrared Only and Infrared with Audio  
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5. Discussion 

This study proposed a multimodal detection system that integrates frequency features from infrared and audio 

waveforms. The analysis confirmed that frequency bands identified through FFT analysis are important for identifying 

animal movements and mitigating false detections. Infrared waveforms provided low-frequency components, such as 

2–3 Hz (swaying vegetation) and 0.1–1 Hz (slow movements of animals or humans), which were particularly 

significant, as highlighted in Section 4.5. 

 

Similarly, audio waveforms contributed mid-to-high frequency bands, such as 1–3 kHz (human voices or animal 

vocalizations) and 10–11 kHz (environmental noise like wind). These features, as demonstrated in Section 4.6, 

significantly improved the AUC for both the RF and LR models. The integration of audio data effectively reduced 

errors caused by environmental factors, such as vegetation sway.  

 

Experiments in this study were conducted at two distinct test sites: a residential area and a mountainous region. These 

environments invited unique challenges such as varying vegetation density and weather conditions for validating the 

robustness and adaptability of the proposed system. By effectively reducing false detections through the integration 

of infrared and audio data, the proposed system shows considerable promise for real -world applications. 

 

In this paper, we evaluated both Random Forest (RF)—a non-linear ensemble method—and Logistic Regression 

(LR)—a linear model—to compare their performance in our system. Based on the analysis in Section 4.4, RF 

consistently delivers robust, high performance on multimodal (infrared + audio) and higher -dimensional datasets 

across diverse frequency-segmentation settings. Meanwhile, LR can perform nearly as well, particularly when paired 

with effective PCA for high-dimensional data, though it is more sensitive to feature engineering. Accordingly, we 

recommend RF as an immediate, stable solution, whereas LR (and other linear models) may be preferable in scenarios 

where interpretability is a priority, especially when identifying which features contribute most to the detection results.  

 

Nevertheless, this study has certain limitations. The system relies on camera-based data collection for ground truth 

labels, limiting detection to the camera’s field of view and introducing a risk of missed detections outside this range. 

Additionally, as noted in Section 3.1, the Raspberry Pi hardware brought challenges in power consumption, 

constraining operational time even with a larger battery. Overcoming these challenges will be essential for improving 

the system’s practicality and enabling its deployment in diverse real-world scenarios.  

6. Conclusion and Future Challenges 

This study proposed and evaluated a multimodal detection system that integrates frequency features from infrared and 

audio waveforms to improve the accuracy of animal approach detection. By applying FFT to these waveform types, 

the system identified critical frequency bands that contribute to the detection accuracy. Infrared waveforms captured 

low-frequency components, such as 0.1–1 Hz and 2–3 Hz, linked to animal movements and environmental fluctuations. 

Audio waveforms provided mid-to-high frequency features, such as 1–3 kHz and 10–11 kHz, capturing animal 

vocalizations, footsteps, and environmental noise. This integration proved highly effective by improving the AUC for 

RF and LR models to 0.990 and 0.987, respectively. From these results, we confirm that combining infrared and audio 

data is the key strategy for practical application of the multimodal IoT camera systems.  

 

Future efforts should focus on improvement of robustness and reliability by adapting the system to diverse 

environmental conditions. Expanding the dataset to include more balanced samples representing various animal 

species is necessary for refining detection performance. Additionally, optimizing machine learning models for real -

time processing and addressing energy efficiency will enable long-term deployment in resource-constrained outdoor 

environments. By addressing these challenges, the proposed system has the potential to significantly advance wildlife 

management, mitigate crop damage, and contribute to broader environmental conservation efforts.  
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Abstract 

In Japan, the shortage of human resources due to the declining birthrate and aging population is becoming a 

social problem. Particularly in the security industry, the irregular working hours and associated risks are 

making it increasingly challenging to secure workers. This has led to a rise in use of security systems that 

utilize security cameras and drones. However, in factories and other buildings with a lot of equipment and 

intricate structures, there is the problem of blind spots caused by occlusion. This situation necessitates the 

use of automated drone patrols, and a problem arises when self-position estimation fails in areas where 

acquiring feature points is difficult, such as corridors. To solve these problems, in a previous study, we 

devised a technique for position estimation using a method that can calculate similarity based on changes in 

the distribution of color information across the entire image. In this study, we propose a method  that can cope 

with environmental changes caused by object movement while combining feature point-based methods. 

Keywords: automated patrol, drone, position estimation, image search 

1. Introduction 

In Japan, the shortage of human resources has become a social problem due to the declining birthrate and aging 

population. This has had a serious effect on the security industry because of the irregular hours of work, the danger 

involved in responding to suspicious persons, and the large number of personnel required to patrol large facilities  

(Ministry of Health, Labour and Welfare, 2024). These factors necessitate the development of security systems that 

utilize security cameras and drones as a solution to the shortage of human resources. However, security systems that 

utilize security cameras face several challenges. For example, when monitoring areas with many pieces of equipment 

and intricate locations, such as factories, there are concerns that the number of cameras installed will increase and 

blind spots will occur due to the effects of occlusion. Therefore, it is expected that drones and robots that can move 

autonomously can mount and move cameras to patrol and monitor these areas, thereby reducing the number of 

personnel required for security. 

 

For example, Skydio 2+ is a drone that can fly autonomously using camera images. It uses Visual SLAM to estimate 

its own position with high accuracy even in non-GNSS space, based on the images from multiple cameras installed 

on the drone. This system enables safe navigation in narrow, complex structures with steel or concrete frames unde r 

bridges and in wide-area shooting. As methods for estimating self-position using camera images in fields other than 

drones, “A method for estimating self-position by feature point matching” (Okamoto et al., 2012; Yamazaki et al., 

https://creativecommons.org/licenses/by/4.0/


Research on Indoor Self-Location Estimation Technique  

Using Similar Image Retrieval Considering Environmental Changes  

Masaya Nakahara, Yoshinori Tsukada, Yoshimasa Umehara and Shota Yamashita 

Copyright: © SANKEI DIGITAL INC. 

2 

2019) and “A method for feature point matching on a 3D map generated from RGBD camera shots”  (Matsumoto et 

al., 2024; Yang et al., 2020) have been proposed. The former calculates features from a set of previously captured 

images and compares them with features obtained from the captured images to estimate the location of the captured 

images. In “A method for feature point matching on a 3D map generated from RGBD camera shots,” a 3D map is 

created using an RGBD camera to obtain the positional relationships of characteristic structures and objects in a 

building. Then, based on the created 3D map, the positions where the features match the input image are searched for 

using deep learning and other methods. 

 

All existing methods estimate self-location under the assumption of many common features in the video, regardless 

of the time of year. Therefore, when targeting narrow indoor areas with many plain walls, such as  those patrolled by 

security drones, there is “the problem of failing to estimate self-position due to the small number of features” and “the 

problem of failing to estimate self-position when the feature object itself is moving” in places, such as factories. For 

example, in the case of Skydio 2+, when flying over a complex structure or a wide area, one of the cameras will 

always reflect a feature object or landmark location, enabling highly accurate self -position estimation. However, in 

the case of an indoor hallway between plain walls, the distance from the camera to the plain walls on both sides of the 

subject is short, and it may be difficult for each camera to always have sufficient features for self-position estimation 

during flight. Conversely, in “A method for estimating self-position by feature point matching” and “A method for 

feature point matching on a 3D map generated from RGBD camera shots,” position estimation is based on previously 

obtained features. Therefore, when applied to locations such as factories, where objects such as tools and instruments 

are easily moved, the number of commonly obtained features decreases, and a completely different position may be 

misestimated as the self-position. 

 

In our previous study (Yamashita et al., 2024), we proposed a method using not only a feature point-based approach 

but also dHash (Figure 1), an algorithm that searches for overlapping images based on changes in the distribution of 

color information across the entire image. The dHash method calculates a hash value based on the distribution of color 

changes in the entire image using the luminance gradient of each segmented image area in relation to adjacent areas.  

Using this algorithm, hash values similar to those in daylight can be calculated based on small differences in luminance 

even in environments with insufficient light. Therefore, it is highly possible to generate hash values that approximate 

the nearest pre-captured image even at nighttime, if the features within the shooting range are visible. This method 

can be used to capture color changes common to images with location information that have been previously captured 

and images used for self-location estimation, even with few obtained features. In addition, because dHash utilizes 

information from the entire image, it effectively suppresses the effects of changes in local features caused by object 

movement better than feature point-based methods. For example, in the case of a hallway, opening and closing doors 

may cause environmental changes. Therefore, the method can address existing methods problems, such as those of 

“failing to estimate self-position due to the small number of features” and of “failing to estimate self-position when 

the feature object itself is moving.” However, demonstration experiments showed that the estimation results are prone 

to errors on straight sections. However, while the drone used for automatic patrol does not need to change the direction 

of travel in the straight sections, it needs to change the direction of travel significantly in the straight sections near th e 

curve points. Therefore, the number of images taken in advance must be denser when the drone is close to a curve, 

and more accurate position estimation is required than in existing studies.  In the existing method, no feature change 

occurs between the images taken before and after the straight section except for the distance from the wall at the end 

of the curve point, and it is said that there is little difference in the similarity in the straig ht section near the curve 

point (Figure 2). 

 

In this study, we propose a method that selects multiple candidate images similar to the input image using scale-

invariant feature transform (SIFT) features and then estimates similar images using dHash among them. This method 

is expected to improve the estimation results for straight sections by considering the distribution of local features 

influenced by columns, windows, and other factors. 

 

Figure 1. Processing steps of dHash 
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Figure 2. Examples of straight sections that are prone to estimation failures 

2. Methods 

2.1 Overview of Methodology 

Based on the issues discussed in Section 1, we propose a self-positioning estimation technique that considers the 

similarity of images taken in straight sections, such as corridors, indoors, and in factories, where security drones target 

many plain wall surfaces. Figure 3 shows the process flow of the proposed method, which consists of the “Candidate 

Image Selection Function,” “Similar Image Retrieval Function,” and “Location Estimation Function.” The input data 

of the proposed method consists of “camera images for location estimation,” “images and location information on the 

patrol route taken in advance,” and “a map of the patrol route composed of point cloud data.” The output data is the 

“coordinates of the estimated location,” which can be displayed on a map. In this case, the images on the travel route 

in the input data are stored with the coordinate values on the map of the travel route corresponding to the s hooting 

position of each image in advance (Figure 4). In this method, images on the patrol route are collected at regular 

intervals in straight sections, while images are collected at denser intervals in curve sections. This is because the 

estimated position acquired by this method is used to provide movement instructions to the drone, so it is necessary 

to collect images at high density in the curve section. 

 

 

Figure 3. Flow of the proposed method 

 

Figure 4. Image diagram of input data 
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2.2 Candidate Image Selection Function 

In the “Candidate Image Selection Function,” the distance to the feature point obtained by SIFT is used as the basis 

for calculating the similarity between each image and the target images to be searched for. First, local features are 

calculated using SIFT for images on the traversing path and images used for self-position estimation. However, if 

local features of the images on the traversing path have already been calculated, they are calculated only for the image 

used for self-position estimation. The Hamming distance to the corresponding feature is then calculated using Brute-

Force Matcher, and the average of all Hamming distances calculated for each image is obtained.  This selects a group 

of images with a certain number of matching features.  

2.3 Similar Image Retrieval Function 

The “Similar Image Retrieval Function” uses dHash to estimate and output images with a threshold level of similarity 

or higher with respect to the images selected in the “Candidate Image Selection Function.” First, a hash value is 

obtained from each image using dHash. Specifically, the grayscale image is divided into regions of a certain size, and 

the difference in luminance between adjacent regions is calculated. Then, based on the calculated results, the lightness 

and darkness of the left and right areas are expressed as a string of 01 and output as a hash value. Next, the hash values 

of the images on the traversing path are compared with the hash values from the images used for self -position 

estimation, and the Hamming distance is calculated from the XOR operation results. The calculated Hamming distance 

is normalized in the range of 0–1, and the value is used as the similarity. Furthermore, images on the traversing path 

with similarity above a threshold value are output as similar images. 

2.4 Location Estimation Function 

The “Location Estimation Function” estimates the most appropriate location on the map of the traversing route from 

the images with high similarity estimated by the “Similar Image Retrieval Function .” First, the system obtains the 

coordinates associated with the images on the traversing path that have a similarity greater than a threshold.  Then, 

using the acquired coordinate values and the estimation result of the previous shooting position, the system outputs 

the coordinate values associated with the image with the highest similarity within the range where the drone can move 

from the previous position to the current shooting position(Figure 5). However, in the absence of a previous estimated 

position, the system outputs the position of the image with the highest similarity as the current shooting position.  

 

Figure 5. Diagram of each function 
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3. Results 

3.1 Verification Experiments 

We applied the proposed method to an indoor corridor at night, assuming two types of situations: one in which the 

situation is the same as when the image was taken beforehand, and another where the situation has changed. Then, we 

verified the applicability of the proposed method to self-position estimation for automatic patrols by security drones. 

The experiment location was an L-shaped corridor on a university campus, which has many plain walls and straight 

sections that are difficult to estimate using the proposed method and previous research methods. For the input data, a 

3D map consisting of point cloud data was constructed using a unit that can measure point cloud data by SLAM, as 

used in previous work (Kajitani et al., 2024). The measurement unit recorded images of the patrol route in advance 

and linked the coordinate values to the map (Figure 6).  

 

In the present experiment, to compare with the previous study and to verify the effects of changes in local features, 

we also verified the case in which the objects that are features, such as door opening and closing and installation 

locations, which are likely to be features in self-position estimation, are varied in each case of the previous study 

(Yamashita et al., 2024) and the proposed method. In addition, each input image must match the shooting conditions 

of a small drone that can fly indoors. To simulate flight, we raised a hand-held web camera capable of capturing RGB 

images to the same height as the small drone's flight altitude. During the evaluation, we compared the self-positions 

estimated by each method with the actual shooting positions. We then compared the percentage of correctly estimated 

positions to the shooting positions at all locations, thereby confirming the usefulness of the proposed method. 

Furthermore, we verified the applicability of the proposed method from the viewpoint of applying it to automatic 

patrols by security drones. 

3.2 Experiments Results 

Figure 7(a) shows the visualization results of position estimation using only dHash without changing local features ; 

Figure 7(b) shows the visualization results of position estimation using the proposed method ; and Figure 7(c) shows 

the visualization results of position estimation using the proposed method with changing local features. Table 1 shows 

the percentage of correct responses, the average position error, and the maximum error for similar images in each 

result. Notably, the location estimation process, which solely relied on dHash and required input images with local 

feature changes, experienced significant failure. Consequently, we didn't verify the visualization results or compute 

the error amount. 

 

Figure 6. Map visualization of patrol routes 
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Figure 7. Location Estimation Visualization Results  

 

Table 1. Percentage of correct answers in each result 

 

4. Discussion 

As shown by visualization results of position estimation in Figure 7(b) and (c), the position of the drone on its patrol 

path is generally estimated from the webcam image, even when SIFT is combined with SIFT.  The comparison of the 

percentage of correct responses in Table 1 confirms that the combination of SIFT produces more accurate location 

estimation results in both cases, with and without changes in local features.  This suggests that the method improves 

two issues in the existing approach. Comparing the respective results with no change in local features, the maximum 

values of the percentage of correct answers and position errors confirm the improvement in the accuracy of position 

estimation. Specifically, the calculation of more than 90% of the correct answers validates the feasibility of location 

estimation across all sections. Therefore, we confirm that combining a method such as dHash, which generously 

captures overall features, and SIFT, which is a feature point-based method, is useful even with few features, such as 

in a corridor or in a straight section, which has been an issue in previous studies.  

 

The combined dHash and SIFT method was generally successful in estimating the input images when local features 

were changing. However, when the results were compared with and without local features, the percentage of correct 

responses decreased and the location error worsened. In fact, when we checked the location where the maximum error 

occurred in Figure 7(c), we found several locations where local features changed (Figure 8). Thus, it is unlikely that 

feature point-based methods alone can further improve estimation accuracy in locations with many changes in local 

features. It is expected to achieve higher accuracy by comparing the results of similarity calculations between the 

feature point-based method and dHash and using the more reliable estimation result as a reference for location 

estimation. However, this experiment assumed that the actual patrolling guards might be in a dark place with no 

Local feature Method 
Number of 

input images 

Number of 

correct images 

Correct 

responses 

Average 

position error 
Maximum error 

No change 

dHash 216 153 70.8% 2.54m 6.56m 

dHash+SIFT 

(Our Method) 
216 209 96.3% 2.14m 2.81m 

Change 

dHash 129 36 27.9% error error 

dHash+SIFT 

(Our Method) 
129 106 82.8% 3.37m 6.69m 
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lighting, despite taking the input images with the lighting on. Therefore, we need to enhance the method’s sensitivity 

to light intensity changes using gamma correction or deep learning to produce images that mimic a quasi-bright 

environment. 

 

Figure 8. Locations of maximum error in Figure 7(c) results 

5. Conclusions 

In this paper, we propose a method for estimating self-location by combining SIFT and dHash to search similar images 

for indoor areas with few features. Empirical experiments confirm that the overall accuracy can be improved, even 

for straight sections that previous studies found difficult to estimate. In the future, we aim to make this method robust 

to changes in light intensity and develop a self-position estimation technique that can be applied even at night.  
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Abstract 

The turning movement count is investigated to understand the traffic conditions at intersections and identify 

bottleneck locations. In recent years, methods utilizing probe data and AI-based analysis of video images 

have been developed to streamline the survey process. Existing methods can count vehicles as they pass but 

struggle to classify vehicle types. Therefore, the objective of this study is to develop a method for counting 

turning movement count by vehicle type using deep learning. In this method, YOLOv8 is used to detect cars, 

buses, and trucks in video images, and BoT-SORT is used for tracking. When a vehicle being tracked crosses 

the cross-sectional lines and auxiliary lines at the intersection captured in the video images, it is counted by 

class. In this case, the entry direction of vehicles that cannot be determined upon entering the intersection is 

estimated based on accurately counted vehicles. Additionally, the entry direction is inferred from a series of 

vector information within the detection bounding boxes. The results of the verification experiment showed 

that the proposed method can count the directional traffic volume with an accuracy of over 95.0% and classify 

the three vehicle classes—car, bus, and truck—with an accuracy of over 90.0%. 

Keywords: Turning Movement Counts, Vehicle, Deep Learning, Image Processing, Classification 

1. Introduction 

In many countries, turning movement counts surveys are conducted to understand the usage of roads (Japan 

International Cooperation Agency, 2018 and Streetlight Data, 2024). In Japan, turning movement counts are 

counted by turning movements (right-turn, left-turn, and straight) and vehicle type to understand traffic conditions at 

intersections and identify bottleneck locations. This survey requires at least four surveyors per intersection, leading 

to increased survey costs as the number of survey locations increases.  For example, in Tokyo, a large-scale survey 

was conducted as part of the Major Intersection Traffic Volume Survey, covering 125 intersections and requiring 

more than 500 surveyors (Metropolitan Police Department, 2023). Against this backdrop, in recent years, the Ministry 

of Land, Infrastructure, Transport and Tourism has been exploring survey methods that utilize probe data to streamline 

the process, as well as methods that analyze recorded video images using AI (Ministry of Land, Infrastructure, 

Transport and Tourism, 2019). A survey method using probe data has demonstrated the potential to count turning 

movement counts by combining ETC 2.0 probe data with data collected from vehicle detectors  (Shiomi, 2022). 

https://creativecommons.org/licenses/by/4.0/
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However, when the penetration rate of vehicles equipped with ETC 2.0 probe data is low, the accuracy of traffic 

volume counting decreases, presenting a significant challenge.  Although the penetration rate is expected to increase 

as more vehicles are equipped with ETC 2.0 onboard units, the installation incurs additional costs.  Therefore, it is 

challenging to rapidly promote the widespread adoption of onboard units.  In response, we focused on a survey method 

that analyzes video images using AI. As survey methods using AI, there are two primary approaches: one involves 

counting based on vehicle trajectories (Horii et al., 2022), and the other sets cross-sectional lines on roads visible in 

video images and counts vehicles passing through these lines (Watanabe et al., 2023).  However, the former method 

faces a challenge in that vehicle trajectories differ for each intersection, requiring parameter adjustments for counting 

every time the target intersection changes. This challenge could potentially be resolved by predefining the camera 

angles during filming, which may reduce variations in vehicle trajectories specific to each intersection.  However, this 

approach cannot be applied to intersections that do not fit the predefined camera angles, leading to a reduction in 

versatility. The latter issue, as shown in Fig.1, arises from the occlusion that occurs when vehicles overlap near the 

cross-sectional line, causing vehicles farther from the camera to be obscured, which leads to counting omissions.  To 

address this issue, we have developed a method for counting turning movement counts that sets auxiliary lines in 

addition to cross-sectional lines as a countermeasure against occlusion (Sumiyoshi et al., 2024).  However, this method 

cannot count turning movement counts categorized by vehicle type. Therefore, the purpose of this study was to develop 

a method for counting turning movement counts by vehicle type using deep learning applied to video images of 

intersections. In Section 2, the proposed method is explained in detail, and the experimental conditions for verifying 

its effectiveness are described. Section 3 evaluates and discusses the results of the demonstration experiments. Section 

4 provides a summary of this study. 

 

2. Methods 

In this section, we summarize the challenges identified in existing research and outline the development strategy of 

the method devised in this study. Next, we provide a detailed explanation of the proposed method. Then, we describe 

the conditions of the empirical experiments conducted using this method.  

2.1 Development Approach for Counting Turning Movement Counts by Vehicle Type 

This section organizes the challenges identified in existing studies and outlines the development approach for the 

method proposed in this study (Watanabe et al., 2023). This method has been reported to result in counting omissions 

when occlusion occurs within the region enclosed by the cross-sectional line, causing the vehicle ID to switch (see 

Fig.1). Hamamura et al. utilized YOLOv7, an object detection method, fine-tuning it with images of passenger cars, 

light trucks, buses, and motorcycles to count cross-sectional traffic volumes by vehicle type (Hamamura et al., 2023). 

Additionally, Okubo et al. employed the SSD object detection method, training it with images of light trucks, buses, 

passenger cars, small trucks, pedestrians, motorcycles, and bicycles to count cross-sectional traffic volumes by the 

trained classes (Okubo et al., 2020). These methods aim to count cross-sectional traffic volumes, leading to the 

placement of cross-sectional lines closer to the camera. However, to count turning movement counts, it is necessary 

to place cross-sectional lines at positions farther from the camera. Therefore, near the cross-sectional lines farther 

from the camera, vehicles appear smaller in the footage, potentially leading to a decrease in vehicle classification 

accuracy. 

 

 

Fig.1. Scenarios where counting omissions occur in existing methods 
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Based on the above, this study proposes a method to address undercounting caused by occlusion. The method involves 

analyzing traffic conditions using vehicles that are correctly counted and estimating the inflow directions of vehicles 

for which only outflow directions can be determined. Additionally, to improve the classification accuracy of small 

vehicles appearing in the footage, this study employs the YOLOv8x model, which can detect smaller objects with 

higher precision than YOLOv7 by replacing the Detection Head with one based on NAS-FPN (Varghese, R and 

Sambath, M, 2024). Furthermore, to enhance vehicle classification accuracy, this study incorporates not only the 

classification results of vehicles on the cross-sectional line but also employs a majority voting approach based on the 

classification results of vehicles within the area enclosed by the cross-sectional lines. 

2.2 Proposal of a Method for Counting Turning Movement Counts by Vehicle Type 

The processing flow of the proposed method is illustrated in Fig.2. This process consists of cross-sectional and 

auxiliary line setting, detection, counting, interpolation, and vehicle classification.  

 

 

In the cross-sectional and auxiliary line setting process, cross-sectional and auxiliary lines are established to determine 

the inflow and outflow directions. The flow of the process is illustrated in Fig.3a. First, eight points (points 1 through 

8) are manually selected to enclose the intersection. Next, lines are drawn connecting points 1 and 2, points 3 and 4, 

points 5 and 6, and points 7 and 8. These lines are extended until adjacent lines intersect.  Then, auxiliary lines are 

established by connecting the midpoints of opposing cross-sectional lines. This approach reduces the impact of 

occlusion within the area enclosed by the cross-sectional lines. 

 

In the detection process, vehicles appearing in the video images are detected and tracked to count turning movement 

counts. In this process, the YOLOv8x model is used to detect three classes: car, bus, and truck.  Next, the detected 

vehicles are tracked using BoT-SORT (Aharon et al., 2022). During this process, an ID is assigned to each tracked 

vehicle to prevent excessive counting at the cross-sectional lines. 

 

In the counting process, vehicles crossing the cross-sectional and auxiliary lines are counted. First, when the midpoint 

of the bottom edge of a bounding box for a detected vehicle passes over a cross-sectional or auxiliary line, the ID of 

that vehicle is recorded. This allows for determining the direction from which the vehicle entered. Subsequently, when 

the midpoint of the bottom edge of the bounding box for the detected vehicle crosses another cross -sectional line, the 

vehicle's ID is recorded again. This process determines the outflow direction and ensures the vehicle is counted as a 

single unit. 

 

Here, an example is explained for the case where a vehicle enters from L1 direction and exits from L3 direction. In 

determining the entry direction, it is assessed whether the vehicle has passed the cross-sectional lines and auxiliary 

lines by verifying if it satisfies equation (1). In this case, x1, y1 represents the intersect ion of L1 and L4, x2, y2 

represents the intersection of L1 and L2, and xp, yp represents the midpoint of the lower edge of the bounding box in 

the previous frame. Next, the intersection between the line segment connecting the midpoints of the lower edges o f 

the rectangle and L1 is determined using equations (2), (3), and (4). The CCW (Counter Clockwise) function defined 

in (2) is used to evaluate the geometric configuration of three points. When the result of this function is positive, the 

points are arranged in a counterclockwise order; when negative, they are arranged in a clockwise order; and when 

 

Fig.2. Processing Flow of the Proposed Method 
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zero, the points are collinear. Furthermore, when both equations (3) and (4) are satisfied, it can be determined that the 

two line segments intersect, indicating that there is an enters from the direction of L1. In this case, A represents the 

midpoint of the lower edge of the bounding box in the previous frame, B represents the midpoint of the lower edge of 

the bounding box in the current frame, C represents the intersection of L1 and L4, and D represents the inte rsection 

of L1 and L2. In determining the exit direction, equation (5) is used to assess whether the midpoint of the lower edge 

of the bounding box in the previous frame is located within the region enclosed by the cross -sectional lines. In this 

case, x1, y1 represent the intersection of L3 and L4, x2, y2 represent the intersection of L3 and L2, and xp, yp denote 

the midpoint of the lower edge of the bounding box in the previous frame. Furthermore, similar to the entry direction 

determination, equations (2), (3), and (4) are used to verify whether the line segment connecting the midpoints of the 

lower edges of the bounding boxes intersects with L3. If an intersection is confirmed, the vehicle is determined to 

have exited in the direction of L3. 

 

(𝑥2 − 𝑥1) ∙ (𝑦𝑝 − 𝑦1) − (𝑦2 − 𝑦1) ∙ (𝑥𝑝 − 𝑥1) ≥ 0 (1) 

CCW(A, B, C) = (𝑦𝐶 − 𝑦𝐴) ∙ (𝑥𝐵 − 𝑥𝐴) − (𝑦𝐵 − 𝑦𝐴) ∙ (𝑥𝐶 − 𝑥𝐴) (2) 

(CCW(A, B, C)) ∙ (CCW(A, B, D)) ≤ 0 (3) 

(CCW(C, D, A)) ∙ (CCW(C,D, B)) ≤ 0 (4) 

(𝑥2 − 𝑥1) ∙ (𝑦𝑝 − 𝑦1) − (𝑦2 − 𝑦1) ∙ (𝑥𝑝 − 𝑥1) < 0 (5) 

 

In the interpolation process, vehicles for which the inflow direction cannot be determined are supplemented by 

estimating their inflow direction, thereby addressing undercounting issues.  The flow of this process is illustrated in 

Fig.3b. First, the inflow direction candidates are estimated for each time point based on the time when the counted 

vehicles crossed the second cross-sectional line and their travel direction. Next, for vehicles whose inflow direction 

cannot be determined due to occlusion, the inflow direction is uniquely estimated based on the vector information, 

including the sequence of timestamps and positions as the vehicle crosses the outflow cross-sectional line. 

 

An example is provided here for the case where a vehicle enters from L2 direction and exits from L3 direction. 

First, the possible entry direction candidates are estimated based on the time when the target vehicle passed L3 

and the time when the correctly counted vehicles passed the second section line. In this example, as shown in 

Fig. 3b, we assume that vehicles are entering from L2 and L4 directions during this time period. Then, when 

equation (6) is satisfied, the vehicle is estimated to have entered from the L4 direction, and when equation (7) is 

satisfied, it is estimated to have entered from the L2 direction. In this case, y2 represents the y-coordinate of the 

midpoint of the lower edge of the bounding box when the vehicle passes L3, and y1 represents the y -coordinate 

of the midpoint of the lower edge of the bounding box when the vehicle is first detected within the area enclosed 

by the section line. 
 

𝑦2 − 𝑦1 > 0 (6) 

𝑦2 − 𝑦1 < 0 (7) 
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In the vehicle classification process, the counted vehicles are categorized into three classes: car, bus, and truck.  The 

flow of this process is illustrated in Fig.3c. First, the classification results from the YOLOv8x model are recorded for 

vehicles detected within the area enclosed by the cross-sectional lines. Then, the recorded results are used to determine 

the vehicle type by applying majority voting to the classification outcomes for each vehicle ID, thereby finalizing the 

classification. 

 

2.3 Validation of the Proposed Method's Effectiveness 

In this study, two validations were conducted to verify the effectiveness of the proposed method.  In the first validation, 

to assess the effectiveness of the interpolation process in the proposed method, we applied both the existing method 

(Sumiyoshi et al., 2024) and the proposed method to video images of intersections and compared the counting accuracy 

of turning movement counts. In the second validation, to evaluate the vehicle classification accuracy of the proposed 

method, vehicle types were classified for the vehicles counted using the proposed method in the first validation. Both 

validations used video images recorded for 25 minutes at an intersection in Tokyo. The target road consisted of four 

lanes in total, with two lanes in each direction (see Fig.4). During the recording, approximately 33 vehicles per minute 

 

 

 

Fig.3. Processing flow of the proposed method 
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were observed traveling through the intersection. The weather during the recording was cloudy. The video images 

were captured using a GoPro HERO11 mounted on a survey pole, which was extended to a height of approximately 

4.0 meters above the ground. During the recording, the GoPro HERO11 was set to a resolution of 5.3K at 30 fps.  In 

both validations, the number of correctly identified vehicles was verified through manual observation. Precision, recall, 

and F1-score were calculated to evaluate the performance. However, in Validation 1, vehicles exiting from L1 to L2 

and from L3 to L4 had a passage count of zero, making it impossible to calculate evaluation metrics. Therefore, these 

cases were excluded from the evaluation. 

 

3. Results 

3.1 Validation of Counting Accuracy for Turning Movement Counts 

The results of turning movement counts counting are shown in Table 1. First, upon examining the F1-scores, it was 

found that the proposed method achieved higher scores than the existing method across all directions.  Furthermore, 

in the proposed method, the F1-scores for all directions except for vehicles traveling from L2 to L1 were 0.950 or 

higher, demonstrating an accuracy comparable to manual observations.  Additionally, in the existing method, vehicles 

traveling in the L3 direction, such as from L1 to L3 and L4 to L3, exhibited low recall rates, indicating a higher 

incidence of undercounting. The likely cause is that L3 is the farthest cross-sectional line from the camera, making it 

more prone to occlusion. Similarly, vehicles traveling from L1 to L4 experienced undercounting due to the large 

number of vehicles traveling from L1 to L3, which caused frequent occlusions.  On the other hand, examining the 

recall rates of the proposed method revealed improvements over the existing method, with vehicles traveling from L1 

to L3 achieving a recall of 0.926, from L2 to L3 achieving 1.000, and from L4 to L3 achieving 0.969.  Additionally, 

for vehicles traveling from L1 to L4, the recall rate was 1.000, indicating that detection omissions were successfully 

mitigated. This indicates that the implementation of the interpolation process in the proposed method, which estimates 

inflow directions from outflow directions, has the potential to count left-turning vehicles and occluded vehicles, 

addressing the challenges faced by the existing method. However, for vehicles traveling from L2 to L1, even the 

proposed method resulted in an F1-score below 0.800. Vehicles traveling from L2 to L1 pass closest to the camera, 

resulting in their upper sections being visible for only a short duration. This condition led to instances of undercounting.  

The intersection targeted in this experiment was a large one, with a distance of approximately 70 meters from the 

camera's position to the farthest crosswalk. Therefore, depending on the size of the intersection, it can be considered 

that installing two cameras along the diagonals of the intersection can ensure counting accuracy.  Furthermore, for 

vehicles traveling from L1 to L4, fluctuations in the bounding boxes caused by straight -moving vehicles resulted in 

excessive counting when the midpoint of the lower edge of the bounding box crossed the sectional line (see Fig.5). 
In this case, because the straight-moving vehicles travel in front of the vehicles that are excessively counted, the upper 

edge of the bounding box exhibits less movement compared to the lower edge. Therefore, by focusing on the 

displacement of the upper edge of the bounding box, it may be possible to achieve improvements.  

 

 

Fig.4. Equipment installation diagram and camera angle during shooting 
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3.2 Validation of Vehicle Classification Accuracy 

The results of vehicle classification are shown in Table 2. Upon examining the results, it was found that the F1-scores 

for car, bus, and truck were 0.900 or higher. Furthermore, when aggregating the classification results across all classes, 

it was found that the F₁-score was 0.973, demonstrating a higher accuracy than the manual counting accuracy of 95.0%. 

Furthermore, for vehicles that exhibited misclassifications during tracking, it was found that using time -series data 

allowed for correct classification through majority voting. Upon examining the images where trucks were 

misclassified as cars, it was observed that such misclassifications occurred predominantly in scenarios where the front 

of the vehicle was prominently visible. As shown in Fig.6, this issue could potentially be mitigated by collecting 

images that prominently feature the front view of vehicles and fine-tuning the YOLOv8x model accordingly. 

Furthermore, among the 12 trucks misclassified as cars, 11 were small-sized trucks. In turning movement counts 

surveys, it is a common practice to classify vehicles into categories such as small and large vehicles, with cars typically 

falling under the category of small vehicles. Therefore, from a practical application perspective, these 11 trucks can 

be considered to have been correctly classified. On the other hand, upon reviewing the images misclassified as trucks, 

it was found that a significant number featured boxcars. Similar to the case with trucks, this issue could potentially be 

addressed by creating training data from images containing boxcars and fine-tuning the model accordingly. 

Additionally, we have demonstrated that the application of deep-learning-based image classification methods enables 

highly accurate vehicle type classification when measuring cross-sectional traffic volume by vehicle type. Therefore, 

Table 1. Counting results of directional traffic volume 

Inflow 

Direction 

Outflow 

Direction 

Ground 

Truth

（vehicles） 

Existing Method Proposed Method 

Precision Recall F1-score Precision Recall F1-score 

L1 
L3 244 1.000 0.820 0.901 1.000 0.926 0.962 

L4 44 0.909 0.909 0.909 0.917 1.000 0.957 

L2 

L1 29 0.905 0.655 0.760 0.909 0.690 0.784 

L3 8 1.000 0.875 0.933 1.000 1.000 1.000 

L4 101 1.000 0.980 0.990 1.000 1.000 1.000 

L3 
L1 223 1.000 0.960 0.979 1.000 0.973 0.986 

L2 24 0.960 1.000 0.980 0.960 1.000 0.980 

L4 

L1 47 0.947 0.766 0.847 0.978 0.936 0.957 

L2 72 1.000 0903 0.949 1.000 0.931 0.969 

L3 32 0.955 0.656 0.778 0.969 0.969 0.969 

All 824 0.986 0.880 0.930 0.989 0.949 0.968 

 

 
Fig.5. Examples of counting failures 

 

Bounding box Trajectory of the midpoint of the bounding box

A few frames 

later

Excessive 

counting

The displacement of the 

upper edge is small
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when measuring turning movement counts by vehicle type, it is considered feasible to classify vehicles into small and 

large categories by extracting images of vehicles classified as trucks and applying image classification methods.  

4. Conclusion 

In this study, a method for measuring turning movement counts by vehicle type was developed using deep learning 

techniques. The results of the empirical experiments demonstrated that implementing an interpolation process to 

estimate the inflow direction from the outflow direction improved the counting accuracy for left-turning vehicles and 

occluded vehicles, which had been a limitation of existing methods. Furthermore, it was demonstrated that, except for 

one direction, the method achieved a counting accuracy equivalent to or exceeding 95.0%, which is the accuracy level 

typically achieved through manual measurement. In addition, using the existing YOLOv8x model, the method 

successfully classified the three classes—car, bus, and truck—with an accuracy exceeding 90.0%. In the future, a 

method will be devised to prevent overcounting by focusing on the upper edge of the bounding boxes during detection.  

Furthermore, the generalizability of the proposed method will be validated by applying it to videos captured fro m 

various angles and under diverse traffic conditions. Additionally, a method will be developed for measuring turning 

movement counts separately for small and large vehicles using image classification techniques, aiming for practical 

application in turning movement counts surveys. 
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Table 2. Classification results by vehicle type 

Class 
Ground Truth 

（Vehicles） 

Predicted 

Count

（Vehicles） 

True Positive 

Count 

（Vehicles） 

Precision Recall F1- score 

Car 673 676 664 0.982 0.987 0.984 

Bus 7 7 7 1.000 1.000 1.000 

Truck 111 108 99 0.917 0.892 0.904 

All 791 791 770 0.973 0.973 0.973 

 

 
Fig.6. Examples of images misclassified as car 
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Abstract 

Labor shortages in the construction industry have become a serious issue in developed countries, particularly 

in Japan, where workforce aging and declining recruitment of young workers are significant challenges. In 

this context, ensuring worker safety has become increasingly critical. While occupational accidents in Japan's 

construction industry have decreased annually due to proper safety measures, the construction industry still 

has the highest number of fatalities among all industries. Falls from height and falls on the same level are the 

leading causes of injuries and fatalities. Therefore, detecting near-miss incidents (such as tripping and 

slipping) that precede falls, along with physical fatigue, could help prevent occupational accidents. This study 

investigated the feasibility of detecting near-miss incidents and estimating fatigue levels using wearable 

sensors suitable for continuous monitoring at construction sites. We conducted validation experiments 

simulating near-miss actions and fatigue conditions. Results showed that applying a Convolutional Neural 

Network (CNN) to data collected from an iPhone® placed in workers' trouser pockets achieved an F1-score 

of 0.95 in detecting near-miss actions. Additionally, by comparing body sway magnitudes before and after 

fatigue, we confirmed the potential for estimating physical fatigue.  

Keywords: Machine Learning, Human Activity Recognition, Fatigue Estimation, Wearable Sensor, Near-

Miss Action 

1. Introduction 

While global economic growth has led to increased construction demand, the construction industry in developed 

countries faces severe labor shortages. In the United States, the Infrastructure Investment and Jobs Act of 2021 has 

outlined a $1.2 trillion infrastructure development plan. However, 88% of U.S. construction companies are 

experiencing difficulties in securing construction workers (Associated General Contractors of America, 2023). Under 

these circumstances, Japan's Ministry of Land, Infrastructure, Transport and Tourism is promoting i-Construction to 

improve safety and labor productivity in the construction industry, resulting in a 6.6% decrease in workplace accidents 

compared to 2018 (Ministry of Health, Labour and Welfare, 2023a).  This reduction can be attributed to the 

implementation of safety measures, such as KY (Kiken Yochi, or hazard prediction) activities that anticipate potential 

dangers at construction sites and 5S (Sort, Set in order, Shine, Standardize, and Sustain) activities that focus o n 

organization and cleanliness, which are well-known among site managers. Moreover, the Ministry of Health, Labour 

https://creativecommons.org/licenses/by/4.0/
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and Welfare formulated the 14th Occupational Safety & Health Program (Ministry of Health, Labour and Welfare, 

2023b) in April 2023, which emphasizes the promotion of digital transformation.  This program encourages the 

introduction of cutting-edge technologies for safety measures, such as proximity detection of workers using ICT 

construction machinery and management of workers' locations and vital data using wearable sensors. These initiatives 

are believed to contribute to the reduction in the number of occupational accidents. However, the construction industry 

still has the highest number of fatalities among all industries (Ministry of Health, Labour and Welfare, 2023a).  This 

can be attributed to the inherently high-risk nature of construction work, which involves tasks such as working at 

heights and operating heavy machinery. Furthermore, physical fatigue resulting from manual labor is believed to 

affect workers' attentiveness and concentration levels, potentially leading to accidents.  According to Heinrich's Law 

(Heinrich, 1931), a well-known empirical rule in occupational safety, for every serious accident, there are 29 minor 

accidents, and behind these, there are 300 near-miss incidents. Near-miss incidents in the construction industry include 

reports of cargo collapse during material loading and cases where outriggers, used to ensure the stability of mobile 

cranes, sink into the ground (Ministry of Health, Labour and Welfare, 2012). Furthermore, focusing on the factors of 

occupational accidents that occur in the construction industry, falls from height are the most frequent, followed by 

falls on the same level (Ministry of Health, Labour and Welfare, 2023a). Therefore, it can be inferred that safety 

management through dynamic monitoring of construction workers is important. Thus, detecting near -miss actions 

such as stumbles and slips, which are precursors to falls and trips, could enable the prevention of occupational 

accidents before they occur. Moreover, estimating the fatigue level of construction workers could help reduce the risk 

of occupational accidents. By detecting near-miss actions and estimating worker fatigue, the number of occupational 

accidents can be decreased, and fatalities can be prevented, thereby contributing to the improvement of safety at 

construction sites. Moreover, estimating the fatigue level of construction workers could help reduce the risk of 

occupational accidents. By detecting near-miss incidents and estimating worker fatigue, the number of occupational 

accidents can be decreased, and fatalities can be prevented, thereby contributing to the improvement of safety at 

construction sites. 

 

In existing research, detecting near-miss actions and estimating physical fatigue have been approached through 

distinct methodologies. First, focusing on the detection of near-miss actions among construction workers, given that 

occupational accidents in the construction industry frequently involve falls from height and falls on the same level 

(Ministry of Health, Labour and Welfare, 2023a), the implementation of wearable sensors has been proposed as a 

means of detecting falls. Notable examples of wearable sensors currently deployed at construction sites include the 

Spot-r by Triax Technologies, Inc., and the fall detection device by Takenaka Engineering Co., Ltd. On the other hand, 

fall detection methods using cameras and LiDAR, which offer higher visibility compared to wearable sensors, have 

become widespread in the healthcare and welfare sectors, notably the mirAI-EYE by GLORY Ltd., and fall detection 

sensor for elderly people by FAJ Inc. However, these methods are designed for care recipients and can only be applied 

in stable environments without blind spots, with a detection range of within 7 meters. Therefore, their adoption in 

construction sites is hindered by the occurrence of blind spots due to complex structures and the difficulty of wide -

area detection. Murata Manufacturing Co., Ltd., has developed a worker safety monitoring system as a wearable sensor 

capable of detecting near-miss incidents such as trips and slips that may precede falls on construction sites. However, 

the specific definitions of near-miss actions and their detection algorithms have not been made public. Therefore, we 

focus on fall and near-miss action detection methods in the sports and welfare fields, where action recognition research 

has been advancing. In the field of sports, a method for detecting falls of soccer players using the deep learning model 

LSTM (Naruo et al., 2023) has been devised. The reason this method is effective is that soccer has a limited duration 

and range of movement, and the players' motion patterns are relatively consistent.  On the other hand, LSTM learns 

patterns from long-term time-series data. Therefore, we infer that it would be difficult to apply this method to 

construction workers, whose behavior varies greatly depending on differences in site terrain, structure , equipment 

used, and job type. In the welfare field, methods for detecting near-miss actions using machine learning models, such 

as SVM and Decision Tree, as well as thresholds (Pang et al., 2019), have been devised. However, these methods are 

limited to elderly individuals during walking or daily activities. Consequently, they are difficult to apply to 

construction workers, who exhibit a wide range of complex behaviors, such as working at heights or operating heavy 

machinery. Therefore, we believe that by proposing a method suitable for detecting near-miss actions of construction 

workers who perform a wide variety of tasks, we can contribute to the prevention of occupational accidents.   

 

Next, we focus on estimating the fatigue level of construction workers. Generally, in fatigue level estimation, analyses 

based on physiological indicators from vital sensors, such as heart rate, electromyography, and oxygen consumption, 

are conducted. However, the utilization of vital sensors remains challenging on construction sites due to factors such 

as the impact on heart rate for specific occupations (Akagawa et al., 2020) and the contact between fall protection 

equipment and vital sensors. Consequently, there are still issues hindering their widespread adoption. In the field of 

sports, where research on fatigue level estimation has been advancing, it is possible to estimate fatigue levels based 
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on exercise load by calculating the amount of exercise from the distance and speed of movement during play, measured 

using wearable sensors (Yamada et al., 2023). However, the amount of exercise used for estimating fatigue levels is 

currently calculated from the distance traveled obtained by GNSS positioning (Yamada et al., 2023). This method is 

difficult to apply to construction sites with complex structures where multipath effects are likely to occur. As a fatigue 

estimation method that does not use GNSS positioning, there is a method for estimating fatigue levels by measuring 

body sway using a force plate, since body sway increases with muscle fatigue (Paillard, 2012). Specifically, body 

sway is measured by having subjects stand upright on a force plate for 30 seconds before and after fatigue. The 

fatigued state is reproduced by running on a treadmill for 30 minutes, and the results of the experiment show that body 

sway significantly increases after fatigue (Derave et al., 2002). However, current methods for measuring body sway 

are limited to precise methods using force plates or cameras, and a method for measuring body sway using wearable 

sensors has not yet been established. Therefore, if it becomes clear that the fatigue level of construction workers can  

be estimated based on body sway, which can be measured by wearable sensors, it will be possible to take breaks and 

reallocate workers according to their fatigue level, which is expected to help prevent the risk of occupational accidents.  

 

Based on the above, this study aimed to investigate the possibility of detecting near-miss actions and estimating fatigue 

levels by measuring body sway using wearable sensors that enable continuous monitoring even on construction sites 

where environmental conditions change daily due to ongoing construction work.  

2. Methods 

2.1 Methods for Detecting Near-Miss Actions 

Near-miss action detection is performed utilizing a deep learning model that has been trained to recognize near -miss 

action patterns. Our approach to near-miss action detection draws upon anomaly detection methodologies from 

medical and mechanical domains (Masetic et al., 2016), as well as action recognition techniques employing wearable 

sensors (Inoue, 2016). In accordance with the methodologies, our study employed wearable sensors to acquire triaxial 

acceleration and triaxial angular velocity measurements. Subsequently, machine learning models were applied to the 

acquired data. The study evaluated two candidate machine learning models—Random Forest and Convolutional 

Neural Network (CNN) classifiers—through empirical experimentation to determine the most effective approach for 

near-miss action detection. The rationale for employing Random Forest lies in its dual advantages: superior 

generalization performance with overfitting prevention, and computational efficiency.  Our Random Forest data 

application process involves converting and standardizing integer raw data. During the segmentation phase, we 

calculate statistical features such as maximum, minimum, mean, standard deviation, and interquartile range. In 

addition to these features, the unit-converted raw data is used as explanatory variables. The reason for using these 

features is that previous research (Bao et al., 2004) suggests the possibility of classifying operations with high 

accuracy. Furthermore, although previous research (Bao et al., 2004) indicates the potential e ffectiveness of FFT-

based features, we do not use them in this study because our preliminary experiments showed that similar features 

were obtained during near-miss incidents and work operations, which could negatively affect model training.  The 

Random Forest parameters were set according to previous research (Breiman, 2001) as follows: the number of trees 

was set to 100, the random seed was fixed at 42, the Gini function was used as the split criterion, while both the 

maximum tree depth and the number of features were set to auto-tune. 

 

The adoption of Convolutional Neural Network (CNN) is justified by their capability to effectively learn 

spatiotemporal features from sensor data through convolutional and pooling layers, as well as their superior 

performance in action and image recognition tasks. The data processing pipeline for CNN implementation involves 

unit conversion of raw integer data followed by standardization to generate the explanatory variables.  The CNN 

architecture consists of three convolutional layers and two fully connected layers, following the structure proposed 

by Zeng (2014). The CNN hyperparameters were configured based on Zeng (2014) as follows: learning rate was set 

to 0.001 with Adam optimizer for learning rate decay, ReLU was used as the activation function, and cross -entropy 

was employed as the loss function. The batch size was set to 10, and the model was trained for 1,000 epochs . For early 

stopping, we set the patience parameter to 30 with a delta value of 0.00001.  

2.2 Methods for Estimating Fatigue Levels 

In this study, fatigue levels are defined as the amount of change in body sway before and after exercise, and evaluated 

by comparing the measurement results of body sway before and after exercise.  The method for measuring body sway 

draws from measurement techniques in medical research, including postural sway measurement during quiet standing 

(Demura et al., 2006) and gait analysis methods based on long-duration walking rhythm patterns (Higashi et al., 2011). 

These methods analyze parameters such as the geometrical patterns of the center of gravity sway plotted in two 

dimensions and peak acceleration during the swing phase. However, these methods are difficult to apply to measuring 
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construction workers' body sway as they were conducted under stable conditions that substantially differ from 

construction site environments. Therefore, this study aims to investigate the feasibility of fatigue estimation by 

developing a robust and easily applicable method for measuring body sway that can accommodate the variable 

conditions of construction sites, considering fatigue induced by construction work. The body sway measurement 

method proposed in this study calculates the mean of differences between moving maximum and minimum values at 

3-second intervals from tri-axial acceleration and tri-axial angular velocity data obtained through wearable sensors.  

If this mean value changes in accordance with the accumulation of worker fatigue and increased physical load, we 

hypothesize that fatigue levels could potentially be estimated through body sway measurements.  

3. Experiment 

3.1 Detecting Near-Miss Actions Experiment 

The objective of this experiment was to investigate the feasibility of detecting near-miss actions by having participants 

perform simulated near-miss actions while wearing three different types of wearable sensors.  

 

3.1.1 Experimental Setup and Procedure 

The experiment was conducted in front of the Hosei University Shinmitsuke building, under experimental conditions, 

where near-miss actions and work actions were simulated and performed. By applying Random Forest and CNN to 

the tri-axial acceleration and tri-axial angular velocity data acquired by three types of wearable sensors during the 

execution of each action, we verified the wearable sensor and machine learning model suitable for detecting near -miss 

actions. Table. 1 shows the defined near-miss actions and work actions. Near-miss actions were defined as fall, trip, 

slip, stagger, and run, which are the most common precursors to falls from height and falls on the same level, which 

are the most frequent causes of occupational accidents. In addition, there are a vast number of types of work actions 

performed by construction workers. Therefore, in this study, in order to verify the usefulness of the proposed method, 

work actions similar to near-miss actions were selected. The work actions were defined as stand up, squat down, sit 

down, get on all fours, lie down, walk, walk while squatting, crawl under obstacles, and step over obstacles. By 

simulating the execution of these defined actions and classifying them into two categories: work actions and near -

miss actions, we attempted to detect near-miss actions. The number of measurements was 5 times for each of the 9 

types of work actions and 10 times for each of the 5 types of near-miss actions per person. By visually checking the 

videos taken during these measurements and extracting the moments of action, ground truth labels were assigned. The 

 

Table.1 Defined work action and near-miss action 

Category Action 

Near-Miss Action 

Fall 

Trip 

Slip 

Stagger 

Run 

Work Action 

Stand up 

Squat Down 

Sit down 

Get on all fours 

Lie down 

Walk 

Walk while squatting 

Crawl under obstacles 

Step over obstacles 
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measurement time of the extracted work actions and near-miss actions was approximately 3 minutes per person for 

both. 

 

3.1.2 Materials and Participants 

The three types of wearable sensors used in this experiment were: the xG-1 (Yamada et al., 2023) by xSENSING Co., 

Ltd., as a sports activity tracker used for analyzing exercise and play activities; the iPhone® 12 Pro by Apple Inc. as 

a smartphone sensor integrated into daily life; and the Apple Watch ® Ultra by Apple Inc. as a smartwatch capable of 

measuring vital signs. The positioning of the wearable sensors is shown in Fig. 1. These three types of wearable 

sensors were selected because each possesses distinct characteristics, allowing us to determine which wearable sensor 

is most suitable for detecting near-miss actions. The specific characteristics of each wearable sensor are as follows: 

the xG-1, attached to the back of the body using a dedicated vest, can acquire high-precision motion data during 

physical activities; the iPhone® can easily collect everyday motion data; and the Apple Watch® can capture hand 

movement data during tasks. These wearable sensors were used to collect three-axis acceleration and three-axis 

angular velocity data at a sampling rate of 50 Hz. The subjects were eight male university students in their 20s, all of 

whom performed near-miss actions and work actions. 

 

3.1.3 Data Processing and Evaluation 

When applying machine learning models, segmentation must be performed on the wearable sensor data where action 

boundaries are ambiguous before data can be processed. The segmentation process is conceptually illustrated in Fig. 

2. As reported in existing literature (Inoue, 2016), conventional segmentation methods typically employ fixed-size 

windows with constant overlap ratios for data processing. In previous research (Huynh et al., 2005), daily actions 

were identified by fixing the window slide width to 250ms and setting the window size to 250ms, 500ms, 1,000ms, 

2,000ms, and 4,000ms. However, it has been shown that the optimal window size varies for each action, and 

appropriate settings for the detection target are important. Similarly, the window overlap ra tio also requires settings 

appropriate for the detection target (Inoue, 2016). Based on these findings, since near -miss actions are instantaneous 

actions, we set the window size to 200ms, 500ms, 1,000ms, and 2,000ms, which are narrower than those in previo us 

research (Huynh et al., 2005), and the overlap ratio to 0%, 30%, 60%, and 90%. We constructed 16 models for each 

of Random Forest and CNN, for a total of 32 models. By verifying the detection accuracy of near -miss actions using 

these 32 models, we aim to identify the machine learning model and the window size/overlap ratio during 

segmentation that are suitable for detecting near-miss actions. The training data for model construction consisted of 

7 out of 8 subjects, and the test data consisted of the remaining 1 subject. 

 

For detection accuracy evaluation, we use the F1-score, which is the harmonic mean of precision and recall, with 

values closer to 1 indicating higher accuracy. The evaluation method compares predicted labels from each window 

with ground truth labels at each data point. When windows overlap, resulting in multiple predictions for a single data 

point, the final prediction is determined by majority voting. 

 

  

Fig.1 Placement of wearable sensors 
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3.2 Estimating Fatigue Levels Experiment 

The objective of this experiment is to investigate the possibility of estimating fatigue levels by measuring and 

comparing body sway before and after fatigue using wearable sensors.  

 

3.2.1 Experimental Setup and Procedure 

The experiment was conducted in front of the Hosei University Sinmitsuke building. The subject ran 5  km in 

approximately 20 minutes to induce a state of fatigue. The same actions were performed before and after fatigue, and 

the change in the amount of body sway was compared. The actions for measuring body sway before and after fatigue 

were walk, transport, upstairs, and downstairs, which were considered easy to measure body sway due to periodic 

movements, assuming actual operation at construction sites. Each action was performed at the same pace for 30 

seconds before and after fatigue, and data on triaxial acceleration and triaxial angular velocity were acquired.  

 

3.2.2 Materials and Participants 

We used xG-1 (Yamada et al., 2023) from xSENSING Co., Ltd., as the wearable sensor. The xG-1 is a sports activity 

tracker used for analyzing exercise and play patterns, making it suitable for measuring body sway. The sensor 

placement and data collection methods are identical to those described in Section 3.1.2. The subject was one male 

student in his 20s. 

 

3.2.3 Data Processing and Evaluation 

Since the acquired raw data of triaxial acceleration and triaxial angular velocity are integer values, the integer value 

of acceleration is converted to G, and the integer value of angular velocity is converted to deg/s. Then, using the 

proposed method, body sway before and after fatigue is compared, and if a difference is observed between before and 

after fatigue, it is evaluated that it is possible to estimate the fatigue levels.  

 

 

4. Results & Discussion 

4.1 Experimental Results and Discussion on Detecting Near-Miss Actions 

The results of Random Forest application are shown in Fig. 3. In Fig. 3, the left horizontal axis represents the window 

size, the right horizontal axis shows the overlap rate, and the vertical axis indicates the F1-score, where higher plot 

points represent higher detection accuracy. The highest detection accuracy was achieved with the xG-1 sensor, using 

a window size of 200ms and an overlap rate of 90%, resulting in an F1-score of 0.45, indicating that Random Forest 

could hardly detect near-miss actions. These results suggest that near-miss action detection using Random Forest is 

challenging. The low detection accuracy of Random Forest can be attributed to two main factors: insufficient 

utilization of time-series data characteristics and inadequate feature extraction and selection. While Random Forest 

excels at handling correlations between individual features, it struggles to directly model temporal depend encies. This 

limitation likely resulted in missing crucial information when detecting near-miss actions, which involve subtle 

movement changes over short periods. The results of the CNN implementation are presented in Fig. 4. The highest 

 

Fig.2 Segmentation image during data loading 

Window size

Overlap
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detection performance was obtained when using an iPhone® with a window size of 2,000ms and a 0% overlap, 

achieving an F1-score of 0.95, indicating that CNN effectively detects near-miss actions with high precision. The 

substantial enhancement in F1-score through CNN implementation can be explained by CNN's inherent capability to 

recognize local patterns within multidimensional data. The improvement in F1-scores with larger window sizes can 

be attributed to the increased number of data points, enabling the learning of more features and recognition of overall 

motion patterns. The F1-score peaked at 0% overlap because each window remains independent, preventing prediction 

labels from being influenced by other windows. Conversely, when overlap exists, identica l data points may be 

included in multiple windows, potentially resulting in different prediction labels for each window.  In this case, 

prediction labels for identical data points are determined by majority voting, causing incorrect predictions to affect 

the overall results and decrease accuracy. Therefore, when different prediction labels are obtained for the same data 

point, alternative methods to majority voting should be considered for label determination. Among wearable sensors, 

the iPhone® showed the highest detection accuracy when applying CNN. This is likely because near-miss action 

characteristics are more prominently displayed around the waist area. Furthermore, when comparing detection 

accuracy across different types of near-miss action, falling motions showed the lowest accuracy. This can be attributed 

to the similarity between falling motions and lying down actions performed during work tasks.  

4.2 Experimental Results and Discussion on Estimating Fatigue Levels 

Fig. 5 and 6 present quantitative analyses of relative changes in body sway magnitude, measured via three -axis 

acceleration and angular velocity, comparing pre- and post-fatigue conditions. The coordinate system establishes the 

x-axis as an anteroposterior, y-axis as vertical, and z-axis as mediolateral directions. Analysis revealed a consistent 

pattern of increased post-fatigue body sway across multiple movement patterns, with particular emphasis on carrying 

out tasks designed to simulate construction worker activities. Stair descent movements exhibited a pronounced 

susceptibility to increased body sway magnitude. Differential analysis of fatigue-induced changes across individual 

axes demonstrated minimal perturbation along the vertical y-axis, while substantial variations were observed in both 

the anteroposterior (x-axis) and mediolateral (z-axis) directions. This axis-specific response pattern can be attributed 

to the inherent stability of vertical components versus the heightened susceptibility of horizontal p lane movements to 

fatigue-induced oscillations. Of particular significance, stair descent movements demonstrated markedly elevated 

fatigue-induced body sway compared to other assessed movements, suggesting enhanced sensitivity to physical 

fatigue. This heightened response during stair descent can be mechanistically linked to the substantial energetic 

demands associated with controlled vertical displacement during the movement sequence.   

 

Fig.3 F1-scores for each parameter obtained 

during Random Forest validation 
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Fig.4 F1-scores for each parameter obtained 

during CNN validation 
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4.3 Discussion on Generalizing to Actual Construction Environments 

In this study, we verified the possibility of detecting near-miss actions and estimating fatigue levels in an experimental 

environment with limited actions. However, since actual construction sites involve a vast variety of actions and diverse 

environments, we will discuss how the findings obtained in this study can be generalized.  

 

In detecting near-miss actions, actual construction sites involve work at heights, work in unstable locations such as 

scaffolding, and work performed by multiple people. Therefore, even if the same action is performed, the actual 

behavior may differ. Thus, we infer that the robustness of near-miss actions detection can be improved by collecting 

comprehensive action data of actual construction workers and building a model.  

 

In estimating fatigue levels, this study measured body sway for periodic actions. Since it was shown that body sway 

increases after fatigue in the action of going down the stairs, the proposed fatigue level estimation method may be 

applicable to actions that are periodic and require balance at actual construction sites. However, this study used student 

subjects in their 20s, and it is necessary to consider individual differences due to the diverse age groups and physiques 

of construction workers in actual operation. Therefore, it is considered that it is possible to estimate the fatigue levels 

corresponding to individual differences by measuring the body sway data in the state before fatigue of each individual 

and calculating the amount of increase in body sway by comparing it with that. 

 

 

5. Conclusion 

In this study, we investigated the feasibility of detecting near-miss actions and estimating physical fatigue levels using 

wearable sensors suitable for continuous monitoring at construction sites. Initially, we evaluated various wearable 

sensors, machine learning models, and segmentation methods appropriate for near-miss action detection. The results 

demonstrated that applying CNN to data collected from an iPhone® placed in a trouser pocket achieved near-miss 

action detection with an F1-score of 0.95. This suggests that our proposed detection method could effectively identify 

near-miss actions at construction sites. Furthermore, the use of smartphones as familiar, unobtrusive sensors integrated 

into daily life could facilitate widespread adoption among construction workers, potentially contributing to accident 

prevention in construction environments. 

 

Subsequently, we examined the possibility of fatigue estimation using the xG-1 sports activity tracker. The results 

indicated that physically demanding activities, such as descending stairs and carrying loads, exhibited notably 

increased body sway under fatigue conditions. This suggests the potential for estimating construction workers' fatigue 

levels during their duties. Such fatigue estimation could enable improved site management through appropriate worker 

allocation, particularly for those prone to fatigue, thereby preventing accidents proactively. 

 

Future research will focus on validating near-miss action detection and fatigue estimation capabilities using data 

collected from actual construction sites. Additionally, we plan to estimate near-miss action locations through GNSS 

positioning and correlate them with site conditions to establish the practical applicability of our detection method. 

Furthermore, we will assess the effectiveness of our fatigue estimation approach by comparing estimated fatigue levels 

with subjective fatigue assessments obtained through worker questionnaires.  

 

Fig.5 Relative changes in acceleration 
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Fig.6 Relative changes in angular velocity 

before and after fatigue 
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