Publications
Article

Tag

Tag Results(1)

Tag Parameters:

Tags = turning-movement-counts

  • Special Issue Others

    A Study on the Development of a Traffic Volume Counting Method by Vehicle Type and Direction Using Deep Learning

    Yuhei Yamamoto
    Masaya Nakahara
    Ryo Sumiyoshi
    Wenyuan Jiang
    Daisuke Kamiya
    Ryuichi Imai

    The turning movement count is investigated to understand the traffic conditions at intersections and identify bottleneck locations. In recent years, methods utilizing probe data and AI-based analysis of video images have been developed to streamline the survey process. Existing methods can count vehicles as they pass but struggle to classify vehicle types. Therefore, the objective of this study is to develop a method for counting turning movement count by vehicle type using deep learning. In this method, YOLOv8 is used to detect cars, buses, and trucks in video images, and BoT-SORT is used for tracking. When a vehicle being tracked crosses the cross-sectional lines and auxiliary lines at the intersection captured in the video images, it is counted by class. In this case, the entry direction of vehicles that cannot be determined upon entering the intersection is estimated based on accurately counted vehicles. Additionally, the entry direction is inferred from a series of vector information within the detection bounding boxes. The results of the verification experiment showed that the proposed method can count the directional traffic volume with an accuracy of over 95.0% and classify the three vehicle classes—car, bus, and truck—with an accuracy of over 90.0%.

    View more >>

We use cookies in order to give you the best possible experience on our website. By continuing to use this site, you agree to our use of cookies.
Accept
Reject