Search for Articles
Environmental Sciences
-
Special Issue Environmental Sciences Psychology and Education Sociology
- Goichi Hagiwara
- Hirokazu Funamori
- Masaru Matsumoto
- Seiji Takami
- Hiroaki Okano
- Daisuke Akiyama
The purpose of this study was to investigate the psychological effects of higher positive and negative ion conditions on the arousal levels of esports players during a racing game. Participants (10 males) from a collegiate esports team were the participants in the study. The effects of higher concentrations of positive and negative ions were evaluated in a randomized crossover. Each participant performed two experiments four weeks apart; two experimental environments were used: positive and negative ions filling the atmosphere (PNI) condition and a control (CON) condition. A car racing game was employed as the performance task. Arousal was measured by the two-dimensional mood scale (TDMS) and electroencephalogram (EEG). EEG was used to measure arousal. The results showed that the level of arousal in the subjective assessment and the level of arousal in the EEG were significantly higher in the CON condition for PNI. In addition, PNI performed significantly better on the game task than in the CON condition. The present study demonstrated in positive and negative ion environments with higher concentrations than in the previous study, and the results showed higher arousal levels in subjective assessments, indicating that higher concentrations of ionic environments are beneficial for esports players.
-
Article Education Environmental Sciences Psychology
Effect of positive and negative ions in esports performance and arousal levels
- Goichi Hagiwara
- Takehiro Iwatsuki
- Hirokazu Funamori
- Masaru Matsumoto
- Yukihiro Kubo
- Seiji Takami
- Hiroaki Okano
- Daisuke Akiyama
The purpose of this study was to investigate the psychological effects of arousal levels in esports players during a racing-game under positive and negative ion environments. Participants (10 male) who belonged to the collegiate esports team were recruited. The influences of positive and negative ions were evaluated in a randomized, crossover, and placebo-controlled double-blind design. Each participant completed two experiments within a 4-week interval. Two experimental environments were used: positive and negative ions filled up the atmosphere (PNI), and a control (CON) condition. For the performance task, a car-racing game was adopted. Arousal state was measured by the Two-Dimensional Mood Scale (TDMS) and an electroencephalogram (EEG). Results indicated that the EEG level was significantly higher in PNI than CON condition. Also, the PNI had a significantly higher performance on the gaming task than the CON condition. The present study demonstrated the beneficial effects of positive and negative ion environments on esports players.